2-Channel Siamese Network for Remote Sensing Change Detection
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Remote sensing change detection aims to compare multi-temporal remote sensing images at the same location and identify significant as well as potential changes between them. Most of the related works focus on the chronological changes but perform poorly on anti-chronological detection. To avoid temporal effect, a common approach is to involve both chronological and anti-chronological data into datasets, but the model training time would be doubled simultaneously. Therefore, this paper proposes a 2-channel siamese network to ensure high accuracy as well as efficient training at the same time. Firstly, a symmetric model is constructed based on existing models to achieve fast training only using the original chronological datasets and to learn both chronological and anti-chronological features. Next, 2-channel siamese input model is designed to wrap the inputs for more robust feature extraction. Finally, attention mechanism is applied to further fuse and refine the extracted features. The proposed method is evaluated on the Onera Satellite Change Detection Sentinel-2 dataset. The Proposed model outperforms several existing models in terms of both accuracy and training validity. A further ablation study verifies the efficacy of proposed models.

    Reference
    Related
    Cited by
Get Citation

郑思宇,胡华浪,黄进,付国栋,杨旭,王敏,李剑波,秦泽宇.双通道孪生网络在遥感变化检测中的应用.计算机系统应用,2022,31(3):56-64

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 17,2021
  • Revised:June 14,2021
  • Adopted:
  • Online: January 24,2022
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063