Design of Experiments Based on Variational Auto-encoder
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Given that the existing design of experiments methods are unable to perform the efficient design of experiments for complex systems, this paper proposes a design of experiments method based on the variational auto-encoder. First, experimental historical data are used to train the variational auto-encoder to encode the complex experimental sample space into a relatively simple latent variable space. Then, samples are obtained from the latent variable space. Finally, new experimental samples are generated by the decoder through restoration, and the design of experiments is achieved. The performance of the proposed method in fitting the hit model of the straight-running torpedo is compared with those of several benchmark design of experiments methods. It is shown that with the same number of samples, the proposed method can optimize the design of experiments and improve the efficiency of the experiments.

    Reference
    [1] 万秋生. 复杂仿真实验设计与监控技术研究[硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2012.
    [2] Hsu MC, Akkerman I, Bazilevs Y. Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment. Wind Energy, 2014, 17(3): 461–481. [doi: 10.1002/we.1599
    [3] 卞曰瑭, 刘夏群, 李金生. 基于网络混合学习策略的股市投资者行为演化模型及仿真. 运筹与管理, 2019, 28(11): 156–168
    [4] 郭啸天, 李文波, 王海雷, 等. 基于ABM与ABS的暴雨洪涝人口风险动态模拟. 计算机系统应用, 2015, 24(12): 10–17. [doi: 10.3969/j.issn.1003-3254.2015.12.002
    [5] Jomon G, Jojish JV, Santhanakrishnan T. System of systems architecture for generic torpedo defence system for surface ships. Advances in Military Technology, 2019, 14(2): 307–319. [doi: 10.3849/aimt.01330
    [6] 谢晓天. 复杂仿真系统高效实验方法研究[硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2016.
    [7] Shokri A. Application of Sono-photo-Fenton process for degradation of phenol derivatives in petrochemical wastewater using full factorial design of experiment. International Journal of Industrial Chemistry, 2018, 9(4): 295–303. [doi: 10.1007/s40090-018-0159-y
    [8] Yolmeh M, Jafari SM. Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology, 2017, 10(3): 413–433. [doi: 10.1007/s11947-016-1855-2
    [9] Bessa MA, Bostanabad R, Liu Z, et al. A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Computer Methods in Applied Mechanics and Engineering, 2017, 320: 633–667. [doi: 10.1016/j.cma.2017.03.037
    [10] Feng GZ, Lei SY, Guo YJ, et al. Optimisation of air-distributor channel structural parameters based on Taguchi orthogonal design. Case Studies in Thermal Engineering, 2020, 21: 100685. [doi: 10.1016/j.csite.2020.100685
    [11] Feng ZK, Niu WJ, Cheng CT. Optimizing electrical power production of hydropower system by uniform progressive optimality algorithm based on two-stage search mechanism and uniform design. Journal of Cleaner Production, 2018, 190: 432–442. [doi: 10.1016/j.jclepro.2018.04.134
    [12] Ma P, Zhou YC, Shang XB, et al. Firing accuracy evaluation of electromagnetic railgun based on multicriteria optimal latin hypercube design. IEEE Transactions on Plasma Science, 2017, 45(7): 1503–1511. [doi: 10.1109/TPS.2017.2705980
    [13] Kingma DP, Welling M. Auto-encoding variational Bayes. arXiv: 1312.6114, 2014.
    [14] Hou XX, Shen LL, Sun K, et al. Deep feature consistent variational autoencoder. Proceedings of 2017 IEEE Winter Conference on Applications of Computer Vision. Santa Rosa, USA: IEEE, 2017. 1133–1141.
    [15] Hsu WN, Zhang Y, Glass J. Unsupervised domain adaptation for robust speech recognition via variational autoencoder-based data augmentation. Proceedings of 2017 IEEE Automatic Speech Recognition and Understanding Workshop. Okinawa: IEEE, 2017. 16–23.
    [16] Semeniuta S, Severyn A, Barth E. A hybrid convolutional variational autoencoder for text generation. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark: Association for Computational Linguistics, 2017. 627–637.
    [17] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in python. The Journal of Machine Learning Research, 2011, 12: 2825–2830
    [18] 翟正利, 梁振明, 周炜, 等. 变分自编码器模型综述. 计算机工程与应用, 2019, 55(3): 1–9. [doi: 10.3778/j.issn.1002-8331.1810-0284
    [19] Mohammadi B, Mehdizadeh S. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agricultural Water Management, 2020, 237: 106145. [doi: 10.1016/j.agwat.2020.106145
    [20] 林香亮, 袁瑞, 孙玉秋, 等. 支持向量机的基本理论和研究进展. 长江大学学报(自科版), 2018, 15(17): 48–53
    [21] 肖建, 于龙, 白裔峰. 支持向量回归中核函数和超参数选择方法综述. 西南交通大学学报, 2008, 43(3): 297–303. [doi: 10.3969/j.issn.0258-2724.2008.03.001
    [22] Shakeel PM, Baskar S, Dhulipala VRS, et al. Cloud based framework for diagnosis of diabetes mellitus using K-means clustering. Health Information Science and Systems, 2018, 6(1): 16. [doi: 10.1007/s13755-018-0054-0
    [23] Pronzato L. Minimax and maximin space-filling designs: Some properties and methods for construction. Journal de la Société Fran? aise de Statistique, 2017, 158(1): 7–36
    [24] 孙华春, 李长文, 李海玲. 直航鱼雷命中概率模型与仿真. 舰船电子工程, 2009, 29(12): 138–141. [doi: 10.3969/j.issn.1627-9730.2009.12.038
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张志博,康达周.基于变分自编码器的实验设计.计算机系统应用,2022,31(3):113-121

Copy
Share
Article Metrics
  • Abstract:667
  • PDF: 1482
  • HTML: 1401
  • Cited by: 0
History
  • Received:May 05,2021
  • Revised:May 19,2021
  • Online: January 24,2022
Article QR Code
You are the first990360Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063