Facial Attractiveness Evaluation System Based on Deep Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To address the problem of low accuracy and poor real-time performance of the facial attractiveness evaluation system, we propose a new facial attractiveness evaluation system based on deep learning. In this system, the HOG feature-based method and the FaceNet pre-training model are used for face detection and facial feature extraction respectively. Furthermore, a two-layer decision model based on the Softmax classification layer and ReLU regression layer is proposed, which is combined with the quantized values of local facial features to evaluate the facial attractiveness. Experimental results on the SCUT-FBP5500 dataset show that the accuracy of the system is 78.58%, and the average evaluation time of a single image is 2.98 seconds, which can meet the needs of practical applications.

    Reference
    Related
    Cited by
Get Citation

王冰冰,麦成源,庄杰颖,潘家辉,梁艳.基于深度学习的人脸颜值评估系统.计算机系统应用,2022,31(1):99-104

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 29,2021
  • Revised:April 29,2021
  • Adopted:
  • Online: December 17,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063