Diversified Movie Recommendation Algorithm Based on Trust Factor
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Traditional collaborative filtering algorithm relies much on ratings among users, which is prone to cold start and data sparsity. In addition, the recommendation results are single. To solve the above problems, this study proposes a diversified movie recommendation algorithm based on trust factor. Firstly, the calculation method of user similarity is improved, and the trust relationship and attribute characteristic information between users are introduced. Next, clustering is conducted to divide users with the same interest into the same community. Finally, user activity, as the movie recommendation degree, is taken into consideration comprehensively in the rating. The penalty factor is introduced, so as to facilitate personalized and diversified movie recommendations for target users. Experimental results show that the proposed algorithm can improve the recommendation accuracy and diversity, achieving a good recommendation effect.

    Reference
    Related
    Cited by
Get Citation

王雨晨.融合信任因子的多样化电影推荐算法.计算机系统应用,2021,30(12):187-193

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 09,2021
  • Revised:April 09,2021
  • Adopted:
  • Online: December 10,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063