Digital-Twin Autonomous Driving Test Environment Based on Mixed Reality
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the continuous development of the digital twin technology at this stage, research and applications surrounding digital twins have gradually become a hot spot. Because traditional autonomous driving test methods have various defects in terms of functionality, safety, and test cost, this article proposes a construction method of the digital-twin automatic driving test environment based on mixed reality in light of the basic characteristics of digital twins and the test method of autonomous driving. The autonomous driving information in the actual environment is mapped to the virtual scenario through spatial coordinate mapping, collision detection model, and virtual scene registration. In addition, the corresponding mixed reality based automatic driving test model is constructed. The collision test demonstrates that the mixed reality system has interactive features. The performance of the system at sampling frequencies of 50 ms, 200 ms, and 1000 ms is compared and analyzed. Experiments show that the algorithm in this study has better operating frame rate characteristics at the sampling frequency of 200 ms or above.

    Reference
    Related
    Cited by
Get Citation

高彦东,王由道.基于混合现实的数字孪生自动驾驶测试环境构建.计算机系统应用,2021,30(11):329-335

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 16,2021
  • Revised:April 09,2021
  • Adopted:
  • Online: October 22,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063