3D Terrain Simulation Based on OpenGL and Perlin Noise
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [33]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    With the innovation and progress of Internet technologies, the application of three-dimensional (3D) simulation technologies in games and animations has become increasingly important. In response to the lack of detail and the distortion of the mountains generated by the random midpoint displacement method, this paper proposes a method of generating simulated 3D terrain environments based on the OpenGL technology and the Perlin noise algorithm. The elevation maps generated by the traditional Perlin noise algorithm are relatively flat. Therefore, they are optimized with the fractal and turbulence algorithms, which produce obvious conflicts that are more in line with the characteristics of the mountains. For the transitional fault phenomena in the process of terrain image mapping, a layered sampling strategy is adopted to make the image more natural. In the case of added light, the plane normal vector is obtained through the multiple binary averaging algorithm, which delivers a smoother mountain light representation. The experimental results show that the method not only realizes the 3D grid construction of 3D terrain but also shows a favorable simulation effect.

    Reference
    [1] Rebollo C, Remolar I, Gumbau J, et al. Three-dimensional trees for virtual globes. International Journal of Digital Earth, 2014, 7(10): 789–810. [doi: 10.1080/17538947.2013.783126
    [2] Ramos F, Chover M, Ripolles O, et al. Continuous level of detail on graphics hardware. Proceedings of the 13th International Conference on Discrete Geometry for Computer Imagery. Szeged: Springer, 2006. 460–469.
    [3] Ripolles O, Ramos F, Puig-Centelles A, et al. Real-time tessellation of terrain on graphics hardware. Computers & Geosciences, 2012, 41: 147–155
    [4] Li WH, Han DF, Li HY, et al. Extraction of digital terrain model based on regular mesh generation in mountainous areas. Multimedia Tools and Applications, 2018, 77(5): 6267–6286. [doi: 10.1007/s11042-017-4535-y
    [5] Mandelbrot BB, Wheeler JA. The fractal geometry of nature. American Journal of Physics, 1983, 51(3): 286–287. [doi: 10.1119/1.13295
    [6] Prusinkiewicz P, Hammel M. A fractal model of mountains and rivers. Graphics Interface. Canadian Information Processing Society, 1993. 174–180.
    [7] Rebollo C, Remolar I, Chover M, et al. A comparison of multiresolution modelling in real-time terrain visualisation. In: Laganá A, Gavrilova ML, Kumar V, et al., eds. Computational Science and Its Applications. Berlin Heidelberg: Springer, 2004. 703–712.
    [8] Emilien A, Bernhardt A, Peytavie A, et al. Procedural generation of villages on arbitrary terrains. The Visual Computer, 2012, 28(6–8): 809–818. [doi: 10.1007/s00371-012-0699-7
    [9] Hou F, Qin H, Qi Y. Procedure-based component and architecture modeling from a single image. The Visual Computer, 2016, 32(2): 151–166. [doi: 10.1007/s00371-015-1061-7
    [10] Pajarola R, Gobbetti E. Survey of semi-regular multiresolution models for interactive terrain rendering. The Visual Computer, 2007, 23(8): 583–605
    [11] Puig-Centelles A, Ripolles O, Chover M. Creation and control of rain in virtual environments. The Visual Computer, 2009, 25(11): 1037–1052. [doi: 10.1007/s00371-009-0366-9
    [12] Smelik RM, Tutenel T, Bidarra R, et al. A survey on procedural modelling for virtual worlds. Computer Graphics Forum, 2014, 33(6): 31–50. [doi: 10.1111/cgf.12276
    [13] Fournier A, Fussell D, Carpenter L. Computer rendering of stochastic models. Communications of the ACM, 1982, 25(6): 371–384. [doi: 10.1145/358523.358553
    [14] Miller GSP. The definition and rendering of terrain maps. ACM SIGGRAPH Computer Graphics, 1986, 20(4): 39–48. [doi: 10.1145/15886.15890
    [15] Perlin K. An image synthesizer. ACM SIGGRAPH Computer Graphics, 1985, 19(3): 287–296. [doi: 10.1145/325165.325247
    [16] Parberry I. Designer worlds: Procedural generation of infinite terrain from real-world elevation data. Journal of Computer Graphics Techniques, 2014, 3(1): 74–85
    [17] 张润花, 刘树群, 赵付青. 地形生成的细分随机移位方法. 华中师范大学学报(自然科学版), 2012, 46(5): 533–536
    [18] 李玉娟, 谭同德. 三维场景中大规模地形地貌的生成. 计算机应用与软件, 2013, 30(11): 131–135. [doi: 10.3969/j.issn.1000-386x.2013.11.037
    [19] 马海凤. 大规模地形可视化技术研究[硕士学位论文]. 西安: 西安电子科技大学, 2015.
    [20] 郑顾平, 白若林. 基于WebGL的动态地形实时绘制. 软件导刊, 2017, 16(12): 202–204, 209
    [21] 王帅, 纪玉波. 基于Simplex噪声绘制云的方法. 辽宁石油化工大学学报, 2009, 29(3): 58–61. [doi: 10.3969/j.issn.1672-6952.2009.03.017
    [22] 石秋华, 孙娟. 利用Perlin噪声生成水波面的动态模拟研究. 软件导刊, 2012, 11(2): 140–142
    [23] 项予, 许森. 基于Perlin噪声的动态水面实时渲染. 计算机工程与设计, 2013, 34(11): 3966–3970. [doi: 10.3969/j.issn.1000-7024.2013.11.049
    [24] Bridson R, Houriham J, Nordenstam M. Curl-noise for procedural fluid flow. ACM Transactions on Graphics, 2007, 26(3): 46–es. [doi: 10.1145/1276377.1276435
    [25] 徐建华, 顾浩, 康凤举, 等. 真实感降雪场景可视化. 系统仿真学报, 2014, 26(10): 2391–2394, 2399
    [26] Barnard R, Ural S. Rendering translucency with Perlin noise. Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia. New Zealand: ACM, 2005. 131–134.
    [27] Coninx A, Bonneau GP, Droulez J, et al. Visualization of uncertain scalar data fields using color scales and perceptually adapted noise. Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization. Toulouse: ACM, 2011. 59–66.
    [28] 施志辉, 徐哲, 葛研军. 基于OpenGL的三角形网格切屑仿真的实现. 机械设计与制造, 2003, (1): 73–75. [doi: 10.3969/j.issn.1001-3997.2003.01.035
    [29] Perlin K. Improving noise. ACM Transactions on Graphics, 2002, 21(3): 681–682. [doi: 10.1145/566654.566636
    [30] 相晓嘉, 朱华勇. 基于Perlin噪声的高分辨率地形仿真方法. 计算机仿真, 2007, 24(12): 174–177. [doi: 10.3969/j.issn.1006-9348.2007.12.046
    [31] 刘鹏程, 艾廷华, 胡晋山. 基于OpenGL技术的隧道仿真系统的研究与开发. 计算机工程, 2008, 34(6): 240–242. [doi: 10.3969/j.issn.1000-3428.2008.06.087
    [32] 王波, 孙蔚. 基于OpenGL的新式OBJ文件纹理贴图方法研究. 计算机与数字工程, 2015, 43(8): 1497–1500. [doi: 10.3969/j.issn1672-9722.2015.08.029
    [33] Phong BT. Illumination for computer generated pictures. Communications of the ACM, 1975, 18(6): 311–317. [doi: 10.1145/360825.360839
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

黄泽华,铁治欣,陈强.基于OpenGL与Perlin噪声的3D地形仿真.计算机系统应用,2022,31(1):182-189

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 18,2021
  • Revised:April 16,2021
  • Online: December 17,2021
Article QR Code
You are the first990809Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063