Kubernetes Scheduling Algorithm of TOPSIS Based on Combined Weight
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Kubernetes is a popular open-source container orchestration engine. Its default scheduling algorithm only considers CPU and memory and uses unified weight to calculate the score of candidate nodes, which cannot meet the requirements of different Pod applications. In view of this, the paper expands the Kubernetes performance indexes, with bandwidth, disk capacity, and IO rate added. The subjective weight is calculated by the analytic hierarchy process (AHP) and the objective weight of resource indexes is calculated by the entropy weight (EW) method in real time according to the resource utilization rate of performance indexes of nodes in the Pod application deployment process. We combine the two weights and apply them to a multi-attribute decision algorithm based on the improved technique for order preference by similarity to an ideal solution (TOPSIS) to select appropriate candidate nodes. The experiment results show that with the increase in the deployed Pod number, the standard deviation of the integrated load increases by 18% compared with that of the Kubernetes default scheduling algorithm under the condition of a large cluster load.

    Reference
    [1] 龚正, 吴治辉, 崔秀龙, 等. Kubernetes权威指南: 从Docker到Kubernetes实践全接触. 4版. 北京: 电子工业出版社, 2019.
    [2] Burns B, Grant B, Oppenheimer D, et al. Borg, omega, and Kubernetes: Lessons learned from three container-management systems over a decade. Queue, 2016, 14(1): 70–93. [doi: 10.1145/2898442.2898444
    [3] Menouer T, Darmon P. New scheduling strategy based on multi-criteria decision algorithm. 2019 27th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). Pavia: IEEE, 2019. 101–107.
    [4] El Haj Ahmed G, Gil-Casti?eira F, Costa-Montenegro E. KubCG: A dynamic Kubernetes scheduler for heterogeneous clusters. Software: Practice and Experience, 2021, 51(2): 213–234. [doi: 10.1002/SPE.2898
    [5] Imdoukh M, Ahmad I, Alfailakawi M. Optimizing scheduling decisions of container management tool using many-objective genetic algorithm. Concurrency and Computation: Practice and Experience, 2020, 32(5): e5536. [doi: 10.1002/cpe.5536
    [6] Zhang WG, Ma XL, Zhang JZ. Research on Kubernetes’ resource scheduling scheme. Proceedings of the 8th International Conference on Communication and Network Security. Qingdao: ACM, 2018. 144–148.
    [7] 孔德瑾, 姚晓玲. 面向5G边缘计算的Kubernetes资源调度策略. 计算机工程, 2021, 47(2): 32–38. [doi: 10.19678/j.issn.1000-3428.0058047
    [8] Li D, Wei Y, Zeng B. A dynamic I/O sensing scheduling scheme in kubernetes. Proceedings of the 2020 4th International Conference on High Performance Compilation, Computing and Communications. Guangzhou: ACM, 2020. 14–19. [doi: 10.1145/3407947.3407950]
    [9] 吴双艳. 基于Docker容器调度优化方法的研究[硕士学位论文]. 郑州: 郑州大学, 2019.
    [10] Dua A, Randive S, Agarwal A, et al. Efficient load balancing to serve heterogeneous requests in clustered systems using kubernetes. 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC). Las Vegas: IEEE, 2020. 1–2.
    [11] Zheng GS, Fu Y, Wu TT. Research on docker cluster scheduling based on self-define Kubernetes scheduler. Journal of Physics: Conference Series, 2021, 1848: 012008. [doi: 10.1088/1742-6596/1848/1/012008
    [12] 崔广章, 朱志祥. 容器云资源调度策略的改进. 计算机与数字工程, 2017, 45(10): 1931–1936. [doi: 10.3969/j.issn.1672-9722.2017.10.009
    [13] 龚坤, 武永卫, 陈康. 容器云多维资源利用率均衡调度研究. 计算机应用研究, 2020, 37(4): 1102–1106. [doi: 10.19734/j.issn.1001-3695.2018.09.0764
    [14] 王宗杰, 郭举. 基于熵权层次分析法的云平台负载预测. 计算机工程与设计, 2021, 42(1): 263–269. [doi: 10.16208/j.issn1000-7024.2021.01.038
    [15] 叶珍. 基于AHP的模糊综合评价方法研究及应用[硕士学位论文]. 广州: 华南理工大学, 2010.
    [16] 彭定洪, 黄子航, 王铁旦, 等. 面向云计算部署方案评价的区间犹豫模糊双重妥协评价方法. 计算机集成制造系统, 2021, 27(6): 1768–1779.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张文辉,王子辰.基于组合权重TOPSIS的Kubernetes调度算法.计算机系统应用,2022,31(1):195-203

Copy
Share
Article Metrics
  • Abstract:1034
  • PDF: 1880
  • HTML: 2015
  • Cited by: 0
History
  • Received:March 18,2021
  • Revised:April 16,2021
  • Online: December 17,2021
Article QR Code
You are the first990809Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063