Prediction of Student’s Knowledge Proficiency Based on Feature Embedding
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [18]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The proficiency of students’ knowledge points is an important basis for teachers to make learning plans. To tackle the problem that the students’ proficiency for knowledge points cannot be described in a probabilistic way in cognitive diagnosis, this study proposes a prediction method of embedding knowledge points as features. This method establishes knowledge point vectors for students and test questions respectively and constructs a convolutional neural network for supervised learning to adjust students’ proficiency for knowledge points according to their answering records. Compared with existing related methods, the proposed method greatly improves the accuracy.

    Reference
    [1] 胡庆. 基于决策树的试卷知识点掌握程度分析研究 [硕士学位论文]. 南昌: 江西财经大学, 2014.
    [2] 苏喻, 张丹, 刘青文, 等. 学生得分预测: 一种基于知识图谱的卷积自编码器. 中国科学技术大学学报, 2019, 49(1): 21–30. [doi: 10.3969/j.issn.0253-2778.2019.01.004
    [3] 朱天宇, 黄振亚, 陈恩红, 等. 基于认知诊断的个性化试题推荐方法. 计算机学报, 2017, 40(1): 176–191. [doi: 10.11897/SP.J.1016.2017.00176
    [4] 陈秋梅, 张敏强. 认知诊断模型发展及其应用方法述评. 心理科学进展, 2010, 18(3): 522–529
    [5] 高旭亮, 汪大勋, 王芳, 等. 基于分部评分模型思路的多级评分认知诊断模型开发. 心理学报, 2019, 51(12): 1386–1397
    [6] Zhang SJ, Liu J, Huang S, et al. Study of priority recommendation method based on cognitive diagnosis model. Qin PL, Wang HZ, Sun GL, et al. Data Science. Singapore: Springer, 2020. 638–647.
    [7] Wang JT, Shi NZ, Zhang X, et al. Sequential gibbs sampling algorithm for cognitive diagnosis models with many attributes. Multivariate Behavioral Research, 2020. [doi: 10.1080/00273171.2021.1896352]
    [8] De La Torre J. DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 2009, 34(1): 115–130. [doi: 10.3102/1076998607309474
    [9] 王天时. 基于特征嵌入表示的文本分类方法研究[硕士学位论文]. 济南: 山东师范大学, 2020.
    [10] 李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述. 计算机应用, 2016, 36(9): 2508–2515, 2565. [doi: 10.11772/j.issn.1001-9081.2016.09.2508
    [11] 任鸽, 杨勇. BP神经网络在高校学生成绩预警中的应用. 数字技术与应用, 2020, 38(10): 63–65
    [12] 刘淇, 陈恩红, 朱天宇, 等. 面向在线智慧学习的教育数据挖掘技术研究. 模式识别与人工智能, 2018, 31(1): 77–90
    [13] 黄荣怀, 周伟, 杜静, 等. 面向智能教育的三个基本计算问题. 开放教育研究, 2019, 25(5): 11–22
    [14] 佟威, 汪飞, 刘淇, 等. 数据驱动的数学试题难度预测. 计算机研究与发展, 2019, 56(5): 1007–1019. [doi: 10.7544/issn1000-1239.2019.20180366
    [15] De Jong MG, Steenkamp JBEM, Fox JP. Relaxing measurement invariance in cross-national consumer research using a hierarchical IRT model. Journal of Consumer Research, 2007, 34(2): 260–278. [doi: 10.1086/518532
    [16] 孙佳楠, 杨武岳, 陈秋. 应用多维项目反应理论模型探索分数减法测验的维度识别. 数学的实践与认识, 2017, 47(21): 291–296
    [17] 王鹏, 朱新立, 王芳. 多维项目反应理论的计量模型、参数估计及应用. 心理学进展, 2015, 5(6): 365–375
    [18] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer, 2009, 42(8): 30–37. [doi: 10.1109/MC.2009.263
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

史浩杰,李幸,贾俊铖,匡健,章红.基于特征嵌入的学生知识点熟练度预测.计算机系统应用,2022,31(1):332-337

Copy
Share
Article Metrics
  • Abstract:754
  • PDF: 1647
  • HTML: 1251
  • Cited by: 0
History
  • Received:March 17,2021
  • Revised:April 09,2021
  • Online: December 17,2021
Article QR Code
You are the first990364Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063