Traffic Object Tracking Based on Sparse Frame Detection
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A video-based multi-object vehicle tracking and real-time trajectory distribution algorithm is proposed to display the driving trajectories of vehicles in a highway traffic video, which can provide useful traffic information for traffic management and decision-making. Firstly, the YOLOv4 algorithm is used to detect vehicle objects. Secondly, in different traffic scenarios, the vehicle data is correlated to yield a complete trajectory by using the proposed tracking method based on sparse frame detection in combination with KCF tracking algorithm. Finally, the vehicle trajectory is displayed with the vehicle distribution map and the top view of traffic scenes, which is convenient for traffic management and analysis. Experimental results show that the proposed vehicle tracking method has an excellent tracking accuracy and a fast processing speed. The real-time trajectory distribution correctly reflects the lane information of real scenes and movement information of the object vehicles, which has a great application value.

    Reference
    Related
    Cited by
Get Citation

余宵雨,宋焕生,梁浩翔,王滢暄,云旭.基于稀疏帧检测的交通目标跟踪.计算机系统应用,2021,30(11):273-280

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 07,2021
  • Revised:March 17,2021
  • Adopted:
  • Online: October 22,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063