X-Ray Security Image Detection Network Based on Optimized YOLOv4
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Given the diverse prohibited varieties in current security inspection scenes and low-efficiency error-prone manual inspections, this study proposes network architecture, Res152-YOLO, based on the YOLOv4 optimized target detection network. Res152-YOLO uses the ResNet-152 network to replace the CSPDarknet-53 network in the original YOLOv4 and connects the improved ResNet to the YOLOv4 network to enhance the detection accuracy of dangerous goods in X-ray images. A series of networks such as YOLOv4 and Res152-YOLO are used to conduct comparative experiments on the same data set to compare the loss curves of the above-mentioned networks, the detection results for various dangerous goods, and the overall performance of each network. The results show that the improved network can improve the accuracy of security detection and eliminate potential safety hazards.

    Reference
    Related
    Cited by
Get Citation

杨嘉诚,黄佳慧,韩永麟,王萍,李晓辉.优化YOLOv4算法的安检X光图像检测网络.计算机系统应用,2021,30(12):116-122

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 09,2021
  • Revised:March 31,2021
  • Adopted:
  • Online: December 10,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063