Self-Correcting Ship Tracking and Counting with Variable Time Window Based on YOLOv3
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Automatically identifying the types and counting the numbers of ships on waterways is of great significance for the construction of “smart waterways”, intelligent early warning regarding water surface, and navigation decision support. In this study, ship sample images are trained with the YOLOv3 pre-training model, and the detection model for ships on waterways is developed after parameter adjustment and optimization. Then, considering that the deep learning model is good at extracting target features, this study combines the target HSV color histogram features and LBP local features to achieve the target selection. In view of common drift and jitter of tracking targets, a correction network is designed with the integration of regression-based direction judgment and target counting with a variable time window, which realizes the automatic detection, tracking and self-correcting counting of moving targets on water surface. The test results show that the proposed method is stable and robust, suitable for automatically analyzing channel videos and extracting statistical data.

    Reference
    Related
    Cited by
Get Citation

刘春,栗健.基于YOLOv3的可变时间窗自校正船只跟踪与计数.计算机系统应用,2021,30(11):240-246

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 20,2021
  • Revised:February 23,2021
  • Adopted:
  • Online: October 22,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063