Online Game Flow Identification Based on Representation Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This study explores the online game flow identification based on representation learning. First of all, due to the lack of game flow in the public data set in the field of flow identification, various types of game flow are collected, and a mapping relationship between various games and process ports is established. Depending on the mapping relationship, the game flow is filtered from the collected flow to expand the public data set. Then the representation learning model in deep learning is used to automatically perform feature learning and feature selection on the pre-processed original end-to-end game flow. Finally, the game category is identified by a classifier. The convolutional neural network self-learns the features of the original information via the construction of feature space, successfully avoiding the loss of information caused by the secondary processing of the flow data set in the traditional machine learning algorithm and the dependence of the flow classification model on feature selection. The experimental results show that, compared with the classification effect of the original data set, the expanded data set has a classification accuracy improved by 5% on the neural network model. The accuracy of game flow identification reaches 92%, and the identification performance is significantly improved.

    Reference
    Related
    Cited by
Get Citation

徐星晨,张俊,年梅.基于表征学习的网络游戏流量识别.计算机系统应用,2021,30(12):172-179

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 25,2021
  • Revised:March 19,2021
  • Adopted:
  • Online: December 10,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063