Segmentation of Buildings in Remote Sensing Images by Improved Unet Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The loss of coding information, the poor adaptability to multi-scale building targets, and the insufficient contextual feature connection can be found in the classic Unet algorithm during the extraction of building features from remote sensing images. To tackle these problems, this study proposes a deformed-residual-pyramid codec network with multi-scale fusion. First, the original coding structure is replaced by the deep coding network and the down-sampling bypass network, which jointly extract the high-level feature information of the building target. Second, the residual pyramid structure combined with deformed convolution is introduced at the penultimate node of the coding network to improve the network’s ability to recognize multi-scale features and edge fuzzy features of buildings. Finally, the high- and low-level features are cascaded and merged layer by layer, and the segmentation result of the building is obtained at the end of the decoding network. The experimental results show that compared with the original model, the improved model has increased F1-score and MIoU by 1.6% and 2.1%, respectively.

    Reference
    Related
    Cited by
Get Citation

黄杰,蒋丰.遥感影像中建筑物的Unet分割改进.计算机系统应用,2021,30(10):319-324

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 05,2021
  • Revised:February 03,2021
  • Adopted:
  • Online: October 08,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063