Coupled Network Embedding Method Based on Dual Perspectives
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Traditional network embedding approaches rely heavily on random walk in a node perspective to get the local sampling sequence of networks and then maximize the co-occurrence probability between adjacent nodes to represent nodes as low-dimensional vectors. The empirical analysis of this study on a real-world network shows that random walk in node and link perspectives can respectively produce network sampling results with different node frequency distributions, resulting in various partitions of the network. To this end, this study proposes an approach to Dual Perspective Based Coupled Network Embedding (DPBCNE). DBPCNE gets the network sampling sequences by random walk in a link perspective and then combines node sequences sampled in a node perspective for coupled training. Experiments show that compared with other network embedding approaches, this approach can well preserve network structures and improve the effectiveness of network embedding for the downstream classification and prediction tasks.

    Reference
    [1] 安沈昊, 于荣欢. 复杂网络理论研究综述. 计算机系统应用, 2020, 29(9): 26–31. [doi: 10.15888/j.cnki.csa.007617
    [2] 吕琳媛. 复杂网络链路预测. 电子科技大学学报, 2010, 39(5): 651–661. [doi: 10.3969/j.issn.1001-0548.2010.05.002
    [3] 郝志峰, 柯妍蓉, 李烁, 等. 基于图编码网络的社交网络节点分类方法. 计算机应用, 2020, 40(1): 188–195
    [4] Zhou LK, Yang Y, Ren X, et al. Dynamic network embedding by modeling triadic closure process. Proceedings of the 32nd Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence. New Orleans, LA, USA. 2018. 571–578.
    [5] 涂存超, 杨成, 刘知远, 等. 网络表示学习综述. 中国科学: 信息科学, 2017, 47(8): 980–996
    [6] 冶忠林, 赵海兴, 张科, 等. 基于多视图集成的网络表示学习算法. 计算机科学, 2019, 46(1): 117–125. [doi: 10.11896/j.issn.1002-137X.2019.01.018
    [7] 王杰, 张曦煌. 基于图卷积网络和自编码器的半监督网络表示学习模型. 模式识别与人工智能, 2019, 32(4): 317–325
    [8] Perozzi B, Al-Rfou R, Skiena S. DeepWalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. East Lansing, MI, USA. 2014. 701–710.
    [9] Grover A, Leskovec J. node2vec: Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. East Lansing, MI, USA. 2016. 855–864.
    [10] Mikolov T, Chen K, Conrado G, et al. Efficient estimation of word representations in vector space. Proceedings of Workshop at ICLR. Scottsdale, AZ, USA. 2013. 1–12.
    [11] Tang J, Qu M, Wang MZ, et al. LINE: Large-scale information network embedding. Proceedings of the 24th International Conference on World Wide Web. Florence, Italy. 2015. 1067–1077.
    [12] Wang DX, Cui P, Zhu WW. Structural deep network embedding. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. East Lansing, MI, USA. 2016. 1225–1234.
    [13] Cao SS, Lu W, Xu QK. Deep neural networks for learning graph representations. Proceedings of the 30th Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence. Phoenix, AZ, USA. 2016. 1145–1152.
    [14] Kipf TN, Welling M. Variational graph auto-encoders. Proceedings of NIPS Workshop on Bayesian Deep Learning. Cambridge, UK. 2016.
    [15] 陈丽, 朱裴松, 钱铁云, 等. 基于边采样的网络表示学习模型. 软件学报, 2018, 29(3): 756–771. [doi: 10.13328/j.cnki.jos.005435
    [16] Goyal P, Hosseinmardi H, Ferrara E, et al. Capturing edge attributes via network embedding. IEEE Transactions on Computational Social Systems, 2018, 5(4): 907–917. [doi: 10.1109/TCSS.2018.2877083
    [17] Whitney H. Congruent graphs and the connectivity of graphs. In: Eells J, Toledo D, eds. Hassler Whitney Collected Papers. Boston: Birkhäuser, 1992. 61–79.
    [18] Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale complexity in networks. Nature, 2010, 466(7307): 761–764. [doi: 10.1038/nature09182
    [19] 金弟, 杨博, 刘杰, 等. 复杂网络簇结构探测——基于随机游走的蚁群算法. 软件学报, 2012, 23(3): 451–464. [doi: 10.3724/SP.J.1001.2012.03996
    [20] Leskovec J, Kleinberg J, Faloutsos C. Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): 2. [doi: 10.1145/1217299.1217301
    [21] McAuley J, Leskovec J. Learning to discover social circles in ego networks. Advances in Neural Information Processing Systems 25. Lake Tahoe, NV, USA. 2012. 539–547.
    [22] Tang J, Zhang J, Yao LM, et al. ArnetMiner: Extraction and mining of academic social networks. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, NV, USA. 2008. 990–998.
    [23] Liben-Nowell D, Kleinberg J. The link prediction problem for social networks. Proceedings of the Twelfth International Conference on Information and Knowledge Management. New Orleans, LA, USA. 2003. 556–559.
    [24] 崔广新, 李殿奎. 基于自编码算法的深度学习综述. 计算机系统应用, 2018, 27(9): 47–51. [doi: 10.15888/j.cnki.csa.006542
    [25] 黄恒琪, 于娟, 廖晓, 等. 知识图谱研究综述. 计算机系统应用, 2019, 28(6): 1–12. [doi: 10.15888/j.cnki.csa.006915
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

倪琦瑄,张霞,卜湛.基于双视角的耦合网络表示学习算法.计算机系统应用,2021,30(9):247-255

Copy
Share
Article Metrics
  • Abstract:843
  • PDF: 1979
  • HTML: 1277
  • Cited by: 0
History
  • Received:February 01,2021
  • Revised:February 24,2021
  • Online: September 04,2021
Article QR Code
You are the first990576Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063