Logo Recognition Technology Based on Convolutional Neural Network
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    At present, the logo recognition technology in China is being rapidly developed, which is embodied in processing accuracy, reproducibility, flexibility, applicability, and information compression. However, the development of this technology is still limited by actual demands. The deep learning model has heavy computation and is difficult to run on lightweight embedded devices. There are many and complex noises in industrial production, which affect the recognition accuracy. To solve the above problems, this study proposes a logo recognition technology based on the convolutional neural network. An improved Canny edge detection algorithm is used to enhance the robustness in edge information extraction, and signs are accurately extracted in a high-noise environment. In addition, to further improve the recognition accuracy, in the combination of Convolutional Neural Network (CNN) and ellipse fitting, this study combines the model recognition and ellipse fitting results to determine the recognition accuracy. This method improves the recognition accuracy while increasing a small amount of calculation.

    Reference
    [1] Hussain BA, Hathal MS. Developing Arabic License Plate Recognition System Using Artificial Neural Network and Canny Edge Detection. Baghdad Science Journal, 2020, 17(3)
    [2] 江帆, 刘辉, 王彬, 等. 基于CNN-GRNN模型的图像识别. 计算机工程, 2017, 43(4): 257–262. [doi: 10.3969/j.issn.1000-3428.2017.04.044
    [3] 成秘. 改进CNN的图像分类模型研究[硕士学位论文]. 阜新: 辽宁工程技术大学, 2020.
    [4] Su Y. A parallel computing and mathematical method optimization of CNN network convolution. Microprocessors and Microsystems, 2021, 80: 103571. [doi: 10.1016/j.micpro.2020.103571
    [5] 薛昆南. 基于卷积神经网络的视觉识别研究[硕士学位论文]. 广州: 华南农业大学, 2016.
    [6] 林旭斌. 基于CNN的视觉交互中图像处理关键技术研究[硕士学位论文]. 广州: 华南理工大学, 2017.
    [7] 何锐波, 狄岚, 梁久祯. 一种改进的深度学习的道路交通标识识别算法. 智能系统学报, 2020, 15(6): 1121–1130
    [8] 朱地博, 李春贵, 张延丽. 抗噪形态学图像边缘检测算法的研究. 信息技术, 2017, (7): 115–117
    [9] 李向前. 基于边缘检测的非局部均值图像去噪算法. 电脑编程技巧与维护, 2020, (8): 3–6, 10. [doi: 10.3969/j.issn.1006-4052.2020.08.002
    [10] 许蓉, 王直, 宗涛. 基于改进高斯滤波的医学图像边缘增强. 信息技术, 2020, 44(4): 75–78
    [11] 朱加乐. 基于Sobel算子及改进的最小二乘圆拟合的PET瓶口缺陷检测[硕士学位论文]. 南京: 南京大学, 2017.
    [12] 夏建芳, 巢军. 一种改进的Canny边缘检测算法. 电子世界, 2017, (10): 22–23. [doi: 10.3969/j.issn.1003-0522.2017.10.012
    [13] 李长有, 陈国玺, 丁云晋. 改进Canny算子的边缘检测算法. 小型微型计算机系统, 2020, 41(8): 1758–1762. [doi: 10.3969/j.issn.1000-1220.2020.08.031
    [14] Jin LH, Xiong CQ, Liu H. Improved bilateral filter for suppressing mixed noise in color images. Digital Signal Processing, 2012, 22(6): 903–912. [doi: 10.1016/j.dsp.2012.06.012
    [15] 梁琼, 赵慧民, 葛任贤, 等. 基于椭圆拟合的改进Hough变换算法在眼控系统中的应用研究. 广东技术师范大学学报, 2020, 41(3): 9–15. [doi: 10.3969/j.issn.1672-402X.2020.03.003
    [16] 郑增, 李明, 韦庆玥, 等. 基于OpenCV的椭圆特征识别算法改进. 计量与测试技术, 2019, 46(8): 86–88, 93
    Cited by
Get Citation

董正通,王涛,赵侦钧,耿子贺.基于卷积神经网络的标识牌识别技术.计算机系统应用,2021,30(10):156-163

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 23,2020
  • Revised:January 25,2021
  • Online: October 08,2021
Article QR Code
You are the first991002Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063