Retail Products Sales Forecast Based on Clustering and Machine Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this study, we propose a forecasting model based on K-means clustering and a machine learning regression algorithm for the sales forecasting of multiple commodities in the retail industry. First, we utilize the clustering technique to identify commodities with similar sales patterns and then divide the whole dataset into different groups. Subsequently, three machine learning regression algorithms, i.e., support vector regression, random forest and XGBoost models, are trained on each sub-dataset. The data size for model training and the scope of forecasting variables are increased by the construction of a data pool. The proposed models are verified on a real sales dataset of a retail company. The experimental results show that the forecasting model based on K-means and support vector regression performs the best, and the forecasting performance of the proposed models is significantly better than that of the benchmark models and the machine learning models without using clustering.

    Reference
    Related
    Cited by
Get Citation

周雨,段永瑞.基于聚类与机器学习的零售商品销量预测.计算机系统应用,2021,30(11):188-194

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 21,2021
  • Revised:February 23,2021
  • Adopted:
  • Online: October 22,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063