Application of Multi-Scale DenseNet in Image Fusion for Visual Image and Infrared Image
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To further improve the fusion effect of visual and infrared images, this paper proposes an image fusion model based on multi-scale convolution operators and DenseNet. This model first uses multi-scale convolution operators to get the direct multi-scale features of images. Then, the DenseNet is used to calculate the indirect multi-scale features of images. To get the fusion weights of image pixel information on different scales, this paper fuses the DenseNet on different scales in a stacking manner, and the fusion weights of the two kinds of images can be derived by activity graphs. At last, the fused image is derived according to the fusion weights. The experimental results show that the recognition rate is high on the THO and CMA sets.

    Reference
    Related
    Cited by
Get Citation

盖赟,荆国栋.多尺度密集网络在红外和可见光图像融合应用.计算机系统应用,2021,30(11):336-341

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 18,2021
  • Revised:February 23,2021
  • Adopted:
  • Online: October 22,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063