Co-Evolutionary Genetic Algorithm and Its Application in Shop Scheduling
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    A new co-evolutionary genetic algorithm is proposed. Based on the coevolution idea, the algorithm divides the population into groups. Each group adopts different crossover and mutation strategies according to the individual situation and difference in its own group. To prevent prematurity, this algorithm only employs the adaptive strategy to dynamically adjust the mutation factor when the catastrophic condition is not triggered. When the catastrophic condition is triggered, with the adaptive strategy applied, the catastrophe mechanism is introduced to generate some new individuals to jump out of the local optimum. The results of function optimization show the effectiveness of the algorithm. The algorithm is used to deal with flow shop scheduling with the optimization objective of minimizing the maximum completion time. The results show that the algorithm is superior to the traditional genetic algorithm in convergence speed and accuracy of optimization results and performs well in solving the shop scheduling problems.

    Reference
    [1] 林诗洁, 董晨, 陈明志, 等. 新型群智能优化算法综述. 计算机工程与应用, 2018, 54(12): 1–9. [doi: 10.3778/j.issn.1002-8331.1803-0260
    [2] Ehrlich PR, Raven PH. Butterflies and plants: A study in coevolution. Evolution, 1964, 18(4): 586-608
    [3] 张鹏. 多蜂群协同进化算法及其应用研究[硕士学位论文]. 济南: 山东师范大学, 2014.
    [4] 刘朝华, 李小花, 章兢. 精英免疫克隆选择的协同进化粒子群算法. 电子学报, 2013, 41(11): 2167–2173. [doi: 10.3969/j.issn.0372-2112.2013.11.009
    [5] 刘振, 鲁华杰, 刘文彪. 自适应协同进化蝙蝠算法. 控制与决策, 2019, 34(8): 1626–1634
    [6] 于晓义, 孙树栋, 褚崴. 基于并行协同进化遗传算法的多协作车间计划调度. 计算机集成制造系统, 2008, 14(5): 991–1000
    [7] 宋晓英, 王艳松. 基于协同进化遗传算法的微网经济环保调度. 电力系统保护与控制, 2014, 42(5): 85–89. [doi: 10.7667/j.issn.1674-3415.2014.05.014
    [8] 冯涛. 基于协同进化算法的多机器人路径规划研究[硕士学位论文]. 南京: 南京邮电大学, 2015.
    [9] 雷明, 孟学雷. 基于协同进化遗传算法的高速铁路运行调整研究. 铁道科学与工程学报, 2017, 14(6): 1137–1145. [doi: 10.3969/j.issn.1672-7029.2017.06.004
    [10] Garey MR, Johnson DS, Sethi R. The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research, 1976, 1(2): 117–129. [doi: 10.1287/moor.1.2.117
    [11] 刘长平, 叶春明. 求解置换流水车间调度问题的布谷鸟算法. 上海理工大学学报, 2013, 35(1): 17–20. [doi: 10.3969/j.issn.1007-6735.2013.01.004
    [12] 梁静, 刘睿, 瞿博阳, 等. 进化算法在大规模优化问题中的应用综述. 郑州大学学报(工学版), 2018, 39(3): 15–21
    [13] 颜学峰, 余娟, 钱锋, 等. 基于改进差分进化算法的超临界水氧化动力学参数估计. 华东理工大学学报(自然科学版), 2006, 32(1): 94–97, 124. [doi: 10.3969/j.issn.1006-3080.2006.01.022
    [14] 程俊, 顾幸生. 灾变合作型协同进化遗传算法及其在Job Shop调度中的应用. 华东理工大学学报(自然科学版), 2007, 33(5): 704–707, 732. [doi: 10.3969/j.issn.1006-3080.2007.05.024
    [15] 叶彦斐, 童先洲, 刘之境. 一种基于改进遗传算法的柔性车间调度方案. 国外电子测量技术, 2020, 39(9): 122–127
    [16] 周艳平, 蔡素, 李金鹏. 一种粒子群和改进自适应差分进化混合算法及在生产调度中的应用. 计算机测量与控制, 2019, 27(8): 227–230
    [17] 王凌. 车间调度及其遗传算法. 北京: 清华大学出版社, 2003.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

周艳平,王功明.协同进化遗传算法及在车间调度中的应用.计算机系统应用,2021,30(10):248-253

Copy
Share
Article Metrics
  • Abstract:848
  • PDF: 2111
  • HTML: 1262
  • Cited by: 0
History
  • Received:January 06,2021
  • Revised:February 03,2021
  • Online: October 08,2021
Article QR Code
You are the first990571Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063