Segmentation of Spine CT Images Based on Multi-Scale Feature Fusion and Attention Mechanism
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Medical spine CT images have low segmentation accuracy due to uneven vertebral bone density, complex vertebral structure and low imaging resolution. To tackle these problems, this study proposes a segmentation method for spine CT images with a convolutional-deconvolutional neural network. The multi-scale residual module and the attention mechanism are introduced to improve the U-Net network, and the feature model is trained and tested. Experimental results on real data sets show that this method can effectively improve the accuracy and the efficiency of spine CT image segmentation. The estimated results of Dice coefficient and Intersection Over Union (IOU) are 0.97 and 0.94, respectively.

    Reference
    Related
    Cited by
Get Citation

金顺楠,周迪斌,何斌,顾静军.基于多尺度特征融合与注意力机制的脊柱CT图像分割.计算机系统应用,2021,30(10):280-286

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 30,2020
  • Revised:January 29,2021
  • Adopted:
  • Online: October 08,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063