Identification Algorithm of Transmission Line External Hidden Danger Based on YOLOv4
CSTR:
  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In this paper, we propose an algorithm based on YOLOv4 to solve the problem that manual inspection and traditional video monitoring methods cannot identify the external hidden dangers of transmission lines in time. In this algorithm, cluster analysis is performed with the improved K-means algorithm on the size of the targets in the image sample set to select the anchor frames that conform to the characteristics of detection targets. After that, the CSPDarknet-53 residual network is used to extract the deep-seated network feature data of the images, and the feature map is processed by the SPP algorithm to increase the receptive field and extract higher-level semantic features. Finally, in combination with the monitoring pictures of transmission lines, the test results show that the proposed algorithm can detect external hidden dangers timely and accurately.

    Reference
    [1] 赵建青, 姚瑶, 邱玩辉, 等. 基于输电线路在线巡视系统的智能预警系统研究. 电力系统保护与控制, 2013, 41(23):49-54.[doi:10.7667/j.issn.1674-3415.2013.23.008
    [2] Girshick R. Faster R-CNN. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile. 2015. 1440-1448.
    [3] Ren SQ, He KM, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.[doi:10.1109/TPAMI.2016.2577031
    [4] Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multibox detector. Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands. 2016. 21-37.
    [5] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified, real-time object detection. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 779-788.
    [6] Redmon J, Farhadi A. YOLO9000:Better, faster, stronger. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 6517-6525.
    [7] 张骥, 余娟, 汪金礼, 等. 基于深度学习的输电线路外破图像识别技术. 计算机系统应用, 2018, 27(8):176-179
    [8] 许志君. 基于深度卷积神经网络的高压输电线路图像识别[硕士学位论文]. 广州:华南理工大学, 2019.
    [9] 赖秋频, 杨军, 谭本东, 等. 基于YOLOv2网络的绝缘子自动识别与缺陷诊断模型. 中国电力, 2019, 52(7):31-39
    [10] 徐守坤, 倪楚涵, 吉晨晨, 等. 基于YOLOv3的施工场景安全帽佩戴的图像描述. 计算机科学, 2020, 47(8):233-240
    [11] Bochkovskiy A, Wang CY, Liao HYM. YOLOv4:Optimal speed and accuracy of object detection. arXiv:2004.109342020, 2020.
    [12] Redmon J, Farhadi A. YOLOv3:An incremental improvement. arXiv:1804.02767, 2018.
    [13] 王思元, 王俊杰. 基于改进YOLOv3算法的高密度人群目标实时检测方法研究. 安全与环境工程, 2019, 26(5):194-200
    [14] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 2261-2269.
    [15] Zhang GX, Zeng Z, Zhang SW, et al. SIFT matching with CNN evidences for particular object retrieval. Neurocomputing, 2017, 238:399-409.[doi:10.1016/j.neucom.2017.01.081
    [16] 赖奎, 姚军艳, 马承志, 等. 输电线路智能巡检系统的设计研究. 广东电力, 2016, 29(7):105-110.[doi:10.3969/j.issn.1007-290X.2016.07.021
    [17] 王琳, 卫晨, 李伟山, 等. 结合金字塔池化模块的YOLOv2的井下行人检测. 计算机工程与应用, 2019, 55(3):133-139.[doi:10.3778/j.issn.1002-8331.1710-0236
    [18] 徐诚极, 王晓峰, 杨亚东. Attention-YOLO:引入注意力机制的YOLO检测算法. 计算机工程与应用, 2019, 55(6):13-23.[doi:10.3778/j.issn.1002-8331.1812-0010
    [19] 石磊, 王亚敏, 曹仰杰, 等. 基于深度卷积神经网络的车型识别. 计算机科学, 2018, 45(5):280-284
    [20] Tang PJ, Wang HL, Kwong S. G-MS2F:GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition. Neurocomputing, 2017, 225:188-197.[doi:10.1016/j.neucom.2016.11.023
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

田二胜,李春蕾,朱国栋,粟忠来,张小明,徐晓光.基于YOLOv4的输电线路外破隐患识别算法.计算机系统应用,2021,30(7):190-196

Copy
Share
Article Metrics
  • Abstract:1158
  • PDF: 2424
  • HTML: 1888
  • Cited by: 0
History
  • Received:November 05,2020
  • Revised:December 12,2020
  • Online: July 02,2021
Article QR Code
You are the first991212Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063