Identification Algorithm of Transmission Line External Hidden Danger Based on YOLOv4
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this paper, we propose an algorithm based on YOLOv4 to solve the problem that manual inspection and traditional video monitoring methods cannot identify the external hidden dangers of transmission lines in time. In this algorithm, cluster analysis is performed with the improved K-means algorithm on the size of the targets in the image sample set to select the anchor frames that conform to the characteristics of detection targets. After that, the CSPDarknet-53 residual network is used to extract the deep-seated network feature data of the images, and the feature map is processed by the SPP algorithm to increase the receptive field and extract higher-level semantic features. Finally, in combination with the monitoring pictures of transmission lines, the test results show that the proposed algorithm can detect external hidden dangers timely and accurately.

    Reference
    Related
    Cited by
Get Citation

田二胜,李春蕾,朱国栋,粟忠来,张小明,徐晓光.基于YOLOv4的输电线路外破隐患识别算法.计算机系统应用,2021,30(7):190-196

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 05,2020
  • Revised:December 12,2020
  • Adopted:
  • Online: July 02,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063