Improved HRNet Based Algorithm for Retinal Blood Vessel Segmentation
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This study proposes an improved HRNet based algorithm to solve the common problems of microvascular detail loss and lesion information misjudgment in the existing retinal vascular segmentation algorithms. In the pre-processing stage, the contrast between the blood vessels and the background is improved by contrast-limited adaptive histogram equalization and adaptive Gamma correction. During coding, HRNet original convolution is replaced by deformable convolution to improve the adaptability of convolution to complex vascular morphological structures. Concerning multi-scale feature aggregation, spatial pyramid pooling and multi-scale convolution are introduced to expand the receptive field and enhance the attention to the local features of the target. Consequently, vascular artifacts and subtle information loss can be improved. Simulation on the DRIVE database shows that the accuracy, sensitivity, and specificity of the proposed algorithm are 95.79%, 80.33%, and 98.12%, respectively.

    Reference
    Related
    Cited by
Get Citation

梁礼明,曾嵩,冯骏,盛校棋.基于改进HRNet的眼底视网膜血管分割算法.计算机系统应用,2021,30(9):219-225

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 02,2020
  • Revised:January 04,2021
  • Adopted:
  • Online: September 04,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063