Small Sample Data Generation Algorithm Based on Meta Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Small-sample problems are common challenges for training models. Because small sample data with insufficient information fails to represent the whole dataset, the data-driven models will have lower accuracy. This study proposes a Generative Adversarial Network (GAN) algorithm based on meta-learning for small sample data. It aims to train a generative adversarial network on various data generation tasks and find the optimal initialization parameters of the model. Consequently, new data generation tasks can be tackled with fewer training samples. The algorithm is applied to a water-cooled maglev unit for data generation. Experiments show that the algorithm can find the optimal initialization parameters under the condition of insufficient samples, which reduces the requirement for the dataset size. The failure classification experiment of mixed data verifies that the generated data is authentic, which is helpful for failure diagnosis and analysis.

    Reference
    Related
    Cited by
Get Citation

王新哲,于泽沛,时斌,包致成,钱华山,赵永俊.基于元学习的小样本数据生成算法.计算机系统应用,2021,30(9):161-170

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 01,2020
  • Revised:December 28,2020
  • Adopted:
  • Online: September 04,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063