Kubernetes Resource Scheduling Algorithm Based on Genetic Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the optimization stage, Kubernetes determines the score of a node only according to its utilization of CPU and memory. This can only guarantee the resource utilization of a single node but fails to achieve the load balancing of cluster resources. In response to this problem, a genetic algorithm-based Kubernetes resource scheduling algorithm is proposed. In the algorithm, two evaluation indicators, i.e., network bandwidth and disk IO, are added and assigned with different weights. In addition, a check dictionary is introduced to check and repair the individuals that do not meet the configuration in the new population generated by the genetic algorithm. Experimental results show that compared with the Kubernetes default resource scheduling strategy, this algorithm takes into account the resource utilization of all nodes in the cluster and performs better in ensuring cluster load balancing.

    Reference
    Related
    Cited by
Get Citation

胡程鹏,薛涛.基于遗传算法的Kubernetes资源调度算法.计算机系统应用,2021,30(9):152-160

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 30,2020
  • Revised:December 28,2020
  • Adopted:
  • Online: September 04,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063