Prediction of Oil Well Wax Deposition Based on AERF Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Wax deposition in oil wells seriously affects the normal production of oil wells during the development and production of oilfields. This phenomenon will block oil flow channels and reduce oil production during the production of oil wells. Wax deposition prediction in oil wells and advance maintenance of oil well equipment are pivotal to higher production capacity, lower maintenance cost and more intelligent management. To solve the problem of serious imbalance between the normal data and wax deposit data of oil wells, this study introduces two processing methods of non-equilibrium samples, ADASYN and ENN, which deal with the non-paraffin and paraffin samples separately. Finally, the random forest algorithm is used to integrate the training data set, and the intelligent AERF model is constructed to predict the wax deposition in oil wells. The experimental results show that the AERF model proposed in this study has a better prediction effect in the wax deposition data set of oil wells, greatly improving the prediction accuracy.

    Reference
    Related
    Cited by
Get Citation

常益浩,李庆云,李克文.基于AERF模型的油井结蜡预测.计算机系统应用,2021,30(9):138-144

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 27,2020
  • Revised:January 04,2021
  • Adopted:
  • Online: September 04,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063