Knowledge Extraction in Electric Power Based on GRU and PCNN
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The main part of drawing the knowledge map of electrical power systems is the extraction of power knowledge. In the traditional supervised-learning-based single neural network models, CNN performs well in extracting the most important local features but is not suitable for processing sequence input, and RNN is strong in tackling serialization tasks but weak in extracting important features. To solve these problems, this study puts forward a model based on GRU and PCNN. Compared with traditional models, this model combining the advantages of the GRU helped model and the PCNN model can obtain impressive results and effectively extract the knowledge of electrical power systems.

    Reference
    Related
    Cited by
Get Citation

宋厚岩,王汉军.基于GRU和PCNN的电力知识抽取.计算机系统应用,2021,30(9):200-205

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 27,2020
  • Revised:December 28,2020
  • Adopted:
  • Online: September 04,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063