Pavement Crack Detection with Continuous Attention Mechanism and Convolution Pyramid Structure
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the increase in global vehicles and the expansion of road surfaces, pavement crack detection has received extensive attention in recent years. Many detector models have been proposed, with some problems, though. For example, some narrow cracks may not be detected, leading to discontinuous cracks; the detailed crack edge information may be lost during filtering or pooling. On the basis of SegNet, a continuous attention mechanism is designed in the encoder layer, and a convolutional pyramid structure is added before the feature map passes through the decoder layer to reduce the fracture in crack detection and obtain more complete edge information. The Precision, Recall, and F1-measure of our approach are 2.47%, 8.21%, and 6.87% higher than those of the related method, respectively, and the Mean Intersection over Union (MIoU) of the detection results on the three open datasets, namely, Crack200, Crack500, and CrackForest is improved by 14.35%.

    Reference
    Related
    Cited by
Get Citation

陈良全,王彩玲,刘华军,蒋国平.基于连续注意力机制和卷积金字塔的路面裂缝检测.计算机系统应用,2021,30(8):249-255

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 24,2020
  • Revised:December 22,2020
  • Adopted:
  • Online: August 03,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063