Application of BiLSTM in JavaScript Malicious Code Detection
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The JavaScript malicious code detection by existing machine learning methods is complex, with large amount of calculation and difficult detection caused by maliciously confused codes. Existing approaches, therefore, fail to realize accurate and real-time detection. For this reason, a method based on Bidirectional Long Short-Term Memory (BiLSTM)-based method for JavaScript malicious code detection is proposed. Firstly, standardized data adapting to be input into the neural network is obtained by code de-obfuscation, data segmentation, and code vectorization. Secondly, the BiLSTM algorithm is used to train the vectorized data and learn the abstract features of JavaScript malicious code. Finally, the abstract features are used to assort codes. The proposed method is compared with deep learning and existing mainstream machine learning approaches, and the results show that this method exhibits a higher accuracy rate and a lower false alarm rate.

    Reference
    Related
    Cited by
Get Citation

雷天翔,万良,于淼,褚堃. BiLSTM在JavaScript恶意代码检测中的应用.计算机系统应用,2021,30(8):266-273

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 28,2020
  • Revised:December 21,2020
  • Adopted:
  • Online: August 03,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063