WSN Data Aggregation Algorithm Based on Fuzzy Reinforcement Learning and Fruit Fly Optimization
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In a wireless sensor network, the sensor has limited energy. If it runs out of energy, the robustness and lifespan of the network will be greatly reduced. Therefore, a data aggregation mechanism based on fuzzy reinforcement learning and fruit fly optimization is proposed to maximize the lifespan of the network and perform efficient data aggregation. First, grid clustering is applied to cluster formation and cluster head selection. Then, all possible data aggregation nodes of each grid cluster are evaluated, in which the best one is selected by fuzzy reinforcement learning. Finally, the fruit fly optimization algorithm is adopted to dynamically position the data aggregation nodes of the entire wireless sensor network. The simulation results show that the proposed scheme is better than the comparison scheme in terms of energy consumption and network robustness.

    Reference
    Related
    Cited by
Get Citation

阎峻,黄建德,孙鹏玉,蒋池剑,陆靓.基于模糊强化学习和果蝇优化的WSN数据聚合算法.计算机系统应用,2021,30(8):219-224

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 14,2020
  • Revised:December 21,2020
  • Adopted:
  • Online: August 03,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063