Point of Interest Recommendation Method Based on LSTM and Distance Optimization
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The existing Point Of Interest (POI) recommendation method operates based on the POI access frequency of an individual user and the access habits of his/her partakers in the location-based social network, with the geographical location of the POI as one of the recommendation conditions. However, most of the POI recommendations only take the geographical location of POI as the preferential reference, rather than the access cost of the users. Therefore, some of the POI candidates generated based on similar methods may meet the user preference but have poor accessibility. To solve the above problems, this study proposes a POI recommendation method based on LSTM and distance optimization. This method supplements the interaction matrix between a user and POI according to the user’s social network and then decomposes the matrix into the hidden vectors of the POI. Finally, according to the user’s POI access record, the temporal relationship between the hidden vectors is established, and the sequence is learned in a recursion-like model to infer the possible POI sequence accessed by the user in the future. In addition, experiments on the Gowalla and Yelp data sets demonstrate that in the limited data dimension, the proposed method has slightly higher recommendation accuracy than other representative models and can generate POI sequence easily accessed by current users.

    Reference
    Related
    Cited by
Get Citation

张大千,尹广楹.基于LSTM与距离优化的兴趣点推荐方法.计算机系统应用,2021,30(6):176-183

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 15,2020
  • Revised:November 18,2020
  • Adopted:
  • Online: June 05,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063