Face Alignment and Reconstruction Based on Encoder-Decoder Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The existing 3D face reconstruction models have the problems of high complexity and poor reconstruction accuracy of multiple face poses. For these reasons, we propose a convolutional neural network that can effectively achieve face alignment and reconstruct a 3D face from a single face picture in the case of a variety of face poses. First, we design an encoder-decoder network composed of a DenseNet module and a deconvolution module. The evaluation of image Structural SIMilarity (SSIM) is introduced into the loss function to construct a new loss function. Then, we train the neural network to get a model, which implements face alignment and 3D face reconstruction tasks. Experiments on the ALFW2000-3D dataset show that the proposed network effectively improves the accuracy of face alignment and reconstruction.

    Reference
    Related
    Cited by
Get Citation

曾远强,蔡坚勇,章小曼,卢依宏.基于编解码网络的人脸对齐和重建算法.计算机系统应用,2021,30(7):184-189

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 04,2020
  • Revised:December 02,2020
  • Adopted:
  • Online: July 02,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063