Chinese Long Text Classification Based on FastText and Key Sentence Extraction
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    FastText is a precise and efficient text classification model, but the precision is low when it is directly applied to Chinese long text classification. Regarding this problem, this study proposes a FastText method for Chinese long text classification, which combines TextRank key clause extraction with Term Frequency-Inverse Document Frequency (TF-IDF). Firstly, TextRank is used to extract the key clauses of the text as input features. Secondly, key words of the text are extracted by TF-IDF as a feature supplement. Finally, the extracted text features are input into the FastText model, which can preserve the key features of the target text while reducing the training corpus. The experimental results show that the accuracy of the proposed method on the datasets is 86.1%, which is about 4% higher than the classic FastText model.

    Reference
    Related
    Cited by
Get Citation

汪家成,薛涛.基于FastText和关键句提取的中文长文本分类.计算机系统应用,2021,30(8):213-218

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 12,2020
  • Revised:December 14,2020
  • Adopted:
  • Online: August 03,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063