Improved Particle Swarm Optimization Integrating Multiple Strategies
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Particle Swarm Optimization (PSO) can easily fall into the local extremum and has slow convergence and low precision in the late evolution. For these reasons, we propose an Improved Particle Swarm Optimization (IPSO) algorithm that integrates multiple strategies. It includes the following four improvements. Firstly, the grouping strategy is adopted. According to the fitness values, the population is divided into an optimal particle group and an inferior particle group, which are subject to crossover and mutation operations, respectively. Secondly, the elite strategy is used to update the population. The first 50% particles are selected from the population after crossover and mutation operations and the initial population according to fitness values and taken as a new population. Thirdly, the particle learning mode is improved to make full use of the population information. The particle best is replaced with the mean of the optimal particle group. Fourthly, probability control is introduced to control the probability of the algorithm’s entering crossover and mutation operations. The simulation results of the test functions show that compared with the standard PSO and its improved variants, the IPSO algorithm can effectively take into account the global exploration and local mining capabilities, and has the advantages of fast convergence, high accuracy, and avoidance from the local optimal solution.

    Reference
    [1] Kennedy J, Eberhart RC. Particle swarm optimization. Proceedings of International Conference on Neural Networks (ICNN'95). Perth, WA, Australia. 1995. 1942-1948.
    [2] 夏学文, 刘经南, 高柯夫, 等. 具备反向学习和局部学习能力的粒子群算法. 计算机学报, 2015, 38(7):1397-1407.[doi:10.11897/SP.J.1016.2015.01397
    [3] Verma R, Mehra R. PSO algorithm based adaptive median filter for noise removal in image processing application. International Journal of Advanced Computer Science and Applications, 2016, 7(7):92-98
    [4] Bian Q, Zhao KR, Wang XM, et al. System identification method for small unmanned helicopter based on improved particle swarm optimization. Journal of Bionic Engineering, 2016, 13(3):504-514.[doi:10.1016/S1672-6529(16)60323-2
    [5] 王荣, 白尚旺, 党伟超, 等. 粒子群退火算法优化的BP神经网络及其应用. 计算机系统应用, 2020, 29(1):244-249.[doi:10.15888/j.cnki.csa.007220
    [6] 秦世强, 胡佳, 曹鸿猷, 等. 基于试验数据的大跨度拱桥有限元模型修正. 中国公路学报, 2019, 32(7):66-76
    [7] 吴静, 罗杨. 动态调整惯性权重的粒子群算法优化. 计算机系统应用, 2019, 28(12):184-188.[doi:10.15888/j.cnki.csa.007162
    [8] 张继荣, 张天. 基于改进粒子群算法的PID控制参数优化. 计算机工程与设计, 2020, 41(4):1035-1040
    [9] 李龙澍, 张效见. 一种新的自适应惯性权重混沌PSO算法. 计算机工程与应用, 2018, 54(9):139-144.[doi:10.3778/j.issn.1002-8331.1612-0093
    [10] 谭阳, 唐德权, 全惠云. 一种排异竞争的粒子群优化算法. 系统仿真学报, 2011, 23(12):2635-2640, 2646
    [11] Liang JJ, Qin AK, Suganthan PN, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 2006, 10(3):281-295.[doi:10.1109/TEVC.2005.857610
    [12] Jiang JH, Li X, Deng ZH, et al. Control-oriented dynamic model optimization of steam reformer with an improved optimization algorithm. International Journal of Hydrogen Energy, 2013, 38(26):11288-11302.[doi:10.1016/j.ijhydene.2013.06.103
    [13] Xia ZY, Li AQ, Li JH, et al. FE model updating on an in-service self-anchored suspension bridge with extra-width using hybrid method. Applied Sciences, 2017, 7(2):191.[doi:10.3390/app7020191
    [14] 刘波, 张焰, 杨娜. 改进的粒子群优化算法在分布式电源选址和定容中的应用. 电工技术学报, 2008, 23(2):103-108.[doi:10.3321/j.issn:1000-6753.2008.02.017
    [15] 张庭场, 耿光飞. 基于改进粒子群算法的中压配电网无功优化. 电网技术, 2012, 36(2):158-162
    [16] Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London:John Murray, Albemarle Street, 1859.
    Cited by
Get Citation

胡佳.融合多种策略的改进粒子群算法.计算机系统应用,2021,30(7):172-177

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 21,2020
  • Revised:November 18,2020
  • Online: July 02,2021
Article QR Code
You are the first992294Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063