Improved Particle Swarm Optimization Integrating Multiple Strategies
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Particle Swarm Optimization (PSO) can easily fall into the local extremum and has slow convergence and low precision in the late evolution. For these reasons, we propose an Improved Particle Swarm Optimization (IPSO) algorithm that integrates multiple strategies. It includes the following four improvements. Firstly, the grouping strategy is adopted. According to the fitness values, the population is divided into an optimal particle group and an inferior particle group, which are subject to crossover and mutation operations, respectively. Secondly, the elite strategy is used to update the population. The first 50% particles are selected from the population after crossover and mutation operations and the initial population according to fitness values and taken as a new population. Thirdly, the particle learning mode is improved to make full use of the population information. The particle best is replaced with the mean of the optimal particle group. Fourthly, probability control is introduced to control the probability of the algorithm’s entering crossover and mutation operations. The simulation results of the test functions show that compared with the standard PSO and its improved variants, the IPSO algorithm can effectively take into account the global exploration and local mining capabilities, and has the advantages of fast convergence, high accuracy, and avoidance from the local optimal solution.

    Reference
    Related
    Cited by
Get Citation

胡佳.融合多种策略的改进粒子群算法.计算机系统应用,2021,30(7):172-177

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 21,2020
  • Revised:November 18,2020
  • Adopted:
  • Online: July 02,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063