Piecewise Linear Representation Based on Time Series Volatility
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [28]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Existing piecewise linear representation of time series ignores the global characteristics of time series and easily falls into local optima. To solve this, the paper studies the trend in time series and finds its fluctuation. The trends is divided into an upper layer and a lower one with their trend holding points removed. The experimental results show that the segmentation method has low time complexity and is easy to implement, and the fitting error is smaller on the premise of keeping the trend characteristics of time series.

    Reference
    [1] 朱志静. 基于趋势和特征子序列的时间序列数据挖掘研究[硕士学位论文]. 无锡: 江南大学, 2019.
    [2] 刘意杨, 李俊朋, 白洪飞, 等. 基于转折点和趋势段的时间序列趋势特征提取. 计算机应用, 2020, 40(S1): 92–97
    [3] Keogh E, Chu S, Hart D, et al. An online algorithm for segmenting time series. Proceedings of 2001 IEEE International Conference on Data Mining. San Jose, CA, USA. 2001. 289–296.
    [4] Ehmke JF, Meisel S, Mattfeld DC. Floating car based travel times for city logistics. Transportation Research Part C: Emerging Technologies, 2012, 21(1): 338–352. [doi: 10.1016/j.trc.2011.11.004
    [5] Pavlidis T, Horowitz SL. Segmentation of plane curves. IEEE Transactions on Computer, 1974, C-23(8): 860–870
    [6] Keogh E, Chakrabarti K, Pazzani M, et al. Dimensionality reduction for fast similarity search in large time series databases. Knowledge and Information Systems, 2001, 3(3): 263–286. [doi: 10.1007/PL00011669
    [7] 林意, 朱志静. 基于趋势的时间序列分段线性化算法. 重庆大学学报, 2019, 42(3): 92–98
    [8] 詹艳艳, 徐荣聪, 陈晓云. 基于斜率提取边缘点的时间序列分段线性表示方法. 计算机科学, 2006, 33(11): 139–142, 161. [doi: 10.3969/j.issn.1002-137X.2006.11.038
    [9] 汤晶晶, 李晋宏. 基于趋势转折点边界面积的时间序列分段算法. 软件, 2019, 40(12): 195–200. [doi: 10.3969/j.issn.1003-6970.2019.12.043
    [10] 肖辉, 马海兵, 龚薇. 基于时态边缘算子的时间序列分段线性表示. 计算机工程与应用, 2008, 44(19): 156–159. [doi: 10.3778/j.issn.1002-8331.2008.19.047
    [11] 廖俊, 于雷, 罗寰, 等. 基于趋势转折点的时间序列分段线性表示. 计算机工程与应用, 2010, 46(30): 50–53, 81
    [12] 尚福华, 孙达辰. 基于时间序列趋势转折点的分段线性表示. 计算机应用研究, 2010, 27(6): 2075–2077, 2092. [doi: 10.3969/j.issn.1001-3695.2010.06.022
    [13] 戴爱明, 高学东. 时间序列三角极值点线性分段算法. 南昌航空大学学报(自然科学版), 2009, 23(2): 25–28, 41
    [14] National Aeronautics and Space Administration. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/. [2020-07-15].
    [15] Chen YP, Keogh E, Hu B, et al. The UCR time series classification archive. www.cs.ucr.edu/~eamonn/time_series_data/. [2020-07-15].
    [16] 李爱国, 覃征. 大规模时间序列数据库降维及相似搜索. 计算机学报, 2005, 28(9): 1467–1475. [doi: 10.3321/j.issn:0254-4164.2005.09.007
    [17] Keogh EJ, Pazzani MJ. A simple dimensionality reduction technique for fast similarity search in large time series databases. Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Kyoto, Japan. 2000. 122–133.
    [18] Zhilyakov EG. Constructing trends of time series segments. Automation and Remote Control, 2017, 78(3): 450–462. [doi: 10.1134/S0005117917030067
    [19] Jaeger H. Observable operator models for discrete stochastic time series. Neural Computation, 2000, 12(6): 1371–1398. [doi: 10.1162/089976600300015411
    [20] Prat KB, Fink E. Search for patterns in compressed time series. International Journal of Image and Graphics, 2002, 2(1): 89–106. [doi: 10.1142/S0219467802000482
    [21] Park S, Lee D, Chu WW. Fast retrieval of similar subsequences in long sequence databases. Proceedings of 1999 Workshop on Knowledge and Data Engineering Exchange. Chicago, IL, USA. 1999. 60–67.
    [22] Zhou F, De La Torre F, Hodgins JK. Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3): 582–596. [doi: 10.1109/TPAMI.2012.137
    [23] Wang L, Li K, Ma Q, et al. Hybrid dynamic learning mechanism for multivariate time series segmentation. Statistical Analysis and Data Mining, 2020, 13(2): 165–177. [doi: 10.1002/sam.11448
    [24] Zhou MN, Yi JZ, Yang JQ, et al. Characteristic representation of stock time series based on trend feature points. IEEE Access, 2020, 8: 97016–97031. [doi: 10.1109/ACCESS.2020.2995958
    [25] Moreno-Garcia J, Moreno-Garcia A, Jimenez-Linares L, et al. Describing time series using fuzzy piecewise linear segments. Kóczy L, Medina-Moreno J, Ramírez-Poussa E, et al. Computational Intelligence and Mathematics for Tackling Complex Problems. Cham: Springer, 2020. 149–155,
    [26] 闫汶和, 李桂玲. 基于shapelet的时间序列分类研究. 计算机科学, 2019, 46(1): 29–35. [doi: 10.11896/j.issn.1002-137X.2019.01.005
    [27] 胡宇鹏. 时间序列数据挖掘中的特征表示与分类方法的研究[博士学位论文]. 济南: 山东大学, 2018.
    [28] 解初, 王建东, 韩邦磊, 等. 基于趋势特征聚类的多元相似时间序列的提取. 科学技术与工程, 2020, 20(7): 2786–2793. [doi: 10.3969/j.issn.1671-1815.2020.07.038
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李颖,于东,胡毅,刘劲松,张丽鹏.基于时间序列波动性的分段线性表示方法.计算机系统应用,2021,30(6):300-305

Copy
Share
Article Metrics
  • Abstract:1094
  • PDF: 2392
  • HTML: 2513
  • Cited by: 0
History
  • Received:October 12,2020
  • Revised:November 05,2020
  • Online: June 05,2021
Article QR Code
You are the first992233Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063