Real-Time Residual Life Prediction of Web-Based Software System Based on LSTM
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The prediction accuracy of the Remaining Useful Life (RUL) is of vital importance to rejuvenation decision of Web-based software systems, so we propose a real-time prediction method for the remaining useful life of Web-based software systems based on the Long Short-Term Memory (LSTM) network. Firstly, an accelerated life test platform is built to collect the performance indicators of the aging of Web-based software systems. Then, according to the time-series characteristics of indicator data, an LSTM-based real-time prediction model for the remaining useful life of Web-based software systems is constructed and trained. The experimental results show that the model can effectively predict the remaining useful life of Web-based software systems in real time with higher accuracy and stronger applicability. This method provides technical support for optimizing system’s rejuvenation decision.

    Reference
    Related
    Cited by
Get Citation

党伟超,李涛,白尚旺.基于LSTM网络的Web软件系统实时剩余寿命预测.计算机系统应用,2021,30(7):253-258

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 21,2020
  • Revised:November 18,2020
  • Adopted:
  • Online: July 02,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063