Pipe Yarn and Color Detection Based on Deep Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To ensure the normal operation of the automatic knotting machine of yarn in the automatic bobbin changing system, we need to detect the yarn sucked by the pipe. Yarn is detected by image processing instead of sensors because it is thin with diverse types and colors. However, traditional image processing methods are too complex and inaccurate to identify yarn with various types, sizes, and colors. This study proposes a network of multi-scale depth separable convolution blocks modified based on Inception-Resnet-A block of Inception v4 to detect yarn in pipes. The conventional 3×3 convolution layers in the Inception-ResNet-A block is replaced with the depth separable convolution layers of the 3×3 convolution kernel, and some of the 1×1 convolution layers are removed for less parameters of convolution blocks and simpler calculation. In addition, ResNet is employed for channel fusion to prevent feature loss. According to the experimental results, this network model is remarkable in generalization and recognition.

    Reference
    Related
    Cited by
Get Citation

李进飞,李建强,段玉堂,任国栋,史伟民.基于深度学习的管道纱线及其颜色检测.计算机系统应用,2021,30(6):311-315

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 13,2020
  • Revised:November 16,2020
  • Adopted:
  • Online: June 05,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063