Visual Servo Manipulator to Grab Mobile Phone of the Best Pose Detection
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Aiming at the pickup of mobile phones in narrow locations such as sewers and jointing, this study proposes a method of servo mechanical arms for grabbing based on machine vision. Firstly, the camera on the eye-in-hand mechanical arm is calibrated, followed by image preprocessing and target detection. In the pose detection, we propose an algorithm to solve the pose of the mobile phones based on the two-dimensional coordinate system. It turns out that the best pose angle is only related to the difference in the pixel coordinates of the clamping point, and the size of the pose angle determines the rotation angle of the gripper. Then, the pose detection is simulated by Matlab, including target detection with SURF invariant feature points and pose calculation. Finally, the right arm of a two-armed Rethink robot grasps a mobile phone for verification. The results show that within the allowable error range, the proposed algorithm accurately guides the servo mechanical arms to grasp mobile phones.

    Reference
    [1] 谷凤伟, 高宏伟, 姜月秋. 一种简易的单目视觉位姿测量方法研究. 光电技术应用, 2018, 33(4): 64–70. [doi: 10.3969/j.issn.1673-1255.2018.04.015
    [2] 贾迪, 朱宁丹, 杨宁华, 等. 图像匹配方法研究综述. 中国图象图形学报, 2019, 24(5): 677–699
    [3] 林志东, 杜滢钊. 特定条件下SIFT与SURF图像匹配算法的性能对比. 厦门理工学院学报, 2019, 27(3): 30–36
    [4] 徐昌源, 全燕鸣, 郭清达. 改进最小二乘法双目视觉位姿测量技术研究与测试. 中国测试, 2016, 42(9): 27–30, 35. [doi: 10.11857/j.issn.1674-5124.2016.09.006
    [5] 徐德. 单目视觉伺服研究综述. 自动化学报, 2018, 44(10): 1729–1746
    [6] 陈梅, 车尚岳. 无标定视觉伺服机器人跟踪控制策略研究. 控制工程, 2019, 26(6): 1055–1059
    [7] 付俊美, 沈永良, 王一光. 基于视觉的清洗机械臂位姿检测系统. 黑龙江大学工程学报, 2019, 10(1): 59–66
    [8] Hung YB, Yeh PS, Harwood D. Passive ranging to known planar point sets. Proceedings of 1985 IEEE International Conference on Robotics and Automation. St. Louis, MO, USA. 1985. 80–85.
    [9] Oberkampf D, DeMenthon DF, Davis LS. Iterative pose estimation using coplanar feature points. Computer Vision and Image Understanding, 1996, 63(3): 495–511. [doi: 10.1006/cviu.1996.0037
    [10] Schweighofer G, Pinz A. Robust pose estimation from a planar target. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2024–2030. [doi: 10.1109/TPAMI.2006.252
    [11] Lepetit V, Moreno-Noguer F, Fua P. EPnP: An accurate O(n) solution to the PnP problem. International Journal of Computer Vision, 2009, 81(2): 155. [doi: 10.1007/s11263-008-0152-6
    [12] Lu CP, Hager GD, Mjolsness E. Fast and globally convergent pose estimation from video images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(6): 610–622. [doi: 10.1109/34.862199
    [13] 董锦涛, 陈水忠, 徐恺, 等. 基于SIFT的图像匹配实时性改进. 电光与控制, 2020, 27(3): 80–83, 88. [doi: 10.3969/j.issn.1671-637X.2020.03.015
    [14] Du GG, Wang K, Lian SG. Vision-based robotic grasping from object localization, pose estimation, grasp detection to motion planning: A review. arXiv: 1905.06658, 2019.
    [15] 丁雅斌, 梅江平, 张文昌, 等. 基于单目视觉的并联机器人末端位姿检测. 机械工程学报, 2014, 50(21): 174–179
    [16] 李星云, 李众立, 廖晓波. 基于单目视觉的工业机器人定位系统的设计. 机床与液压, 2015, 43(9): 35–38. [doi: 10.3969/j.issn.1001-3881.2015.09.010
    [17] 李彬, 罗彪. 机器视觉在物体位姿检测中的应用. 传感器与微系统, 2016, 35(2): 150–153
    [18] 谢宇珅, 吴青聪, 陈柏, 等. 基于单目视觉的移动机械臂抓取作业方法研究. 机电工程, 2019, 36(1): 71–76. [doi: 10.3969/j.issn.1001-4551.2019.01.015
    [19] 陶丹丹, 赵迪. 机械手臂中心视觉自动校正方法研究. 机床与液压, 2019, 47(20): 55–59, 77. [doi: 10.3969/j.issn.1001-3881.2019.20.013
    [20] 贾丙西, 刘山, 张凯祥, 等. 机器人视觉伺服研究进展: 视觉系统与控制策略. 自动化学报, 2015, 41(5): 861–873
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

田军委,闫明涛,丁良华,张震,张磊蒙,郝阳波.视觉伺服机械臂手机抓取最佳位姿检测.计算机系统应用,2021,30(6):154-161

Copy
Share
Article Metrics
  • Abstract:962
  • PDF: 2818
  • HTML: 1601
  • Cited by: 0
History
  • Received:October 08,2020
  • Revised:November 02,2020
  • Online: June 05,2021
Article QR Code
You are the first990391Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063