Application of Simulated LiDAR Point Cloud in Roadside Perception Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The roadside perception algorithm is integrated with the on-board perception algorithm to achieve over-the-horizon perception. The performance of the perception algorithm based on deep learning depends on the quality of the point cloud annotation of lidar which is harder than the annotation of 2D images because it takes longer time and calls for much manpower. In addition, existing perception algorithms based mainly on the on-board lidar. In this study, we proposes a perception algorithm based on the feature clustering of roadside lidar grids. This algorithm rasterizes the point cloud of roadside lidar and extract the features, then learn the primary perception information of the grids by creating a deep learning model for clustering on this basis. We also simulate the point cloud of roadside lidar via a simulation platform, and studies the application of the hybrid data set in training perception algorithm, which is fine-tuned by the pre-training model of simulation data. Experimental results show that the proposed perception algorithm is reliable with real-time service. Besides, simulating the point cloud of roadside lidar helps with the training of this algorithm and reduces its dependence on annotation, improving its performance.

    Reference
    Related
    Cited by
Get Citation

邹凯,郭云鹏,陈升东,袁峰.模拟激光雷达点云在路侧感知算法中的应用.计算机系统应用,2021,30(6):246-254

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 30,2020
  • Revised:October 28,2020
  • Adopted:
  • Online: June 05,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063