Deep Learning Recommendation Algorithm Based on Attention Mechanism
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This study proposes a deep learning recommendation algorithm based on attention mechanism to solve the problem that the current recommendation algorithms based on comment texts have insufficient extraction of text features and implicit information. The comment text representations of users and items are constructed, and the context dependency of texts is extracted by bidirectional gated recurrent units for text feature representations. Moreover, the attention mechanism is introduced to obtain the interest preference of users and the attribute features of items more accurately. The two sets of hidden features of the generated user and item comment data are respectively input into the fully connected layer and then merge into the same vector space for rating prediction. As a result, the recommendation results are obtained. Experiments on two public data sets, Yelp and Amazon, show that the proposed algorithm has better recommendation performance than other algorithms.

    Reference
    Related
    Cited by
Get Citation

申晋祥,鲍美英.基于注意力机制的深度学习推荐算法.计算机系统应用,2021,30(6):220-225

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 08,2020
  • Revised:November 02,2020
  • Adopted:
  • Online: June 05,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063