Extra Deep Convolutional Networks for Large-Scale Image Recognition
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The convolutional network depth is crucial to accurate large-scale image recognition. In this work, we thoroughly evaluate the networks with increasing depth using the architecture with quite small (3×3) convolution filters. The prior-art configurations can be improved significantly after the depth is pushed to 16–19 weight layers. The comparison with the convolution networks of other convolution filter architectures verifies the effectiveness of the proposed network for large-scale image recognition. In addition, the network verification is conducted with some other data sets to avoid the inherent bias of training data sets. As a result, the most advanced results can be obtained from these data sets.

    Reference
    Related
    Cited by
Get Citation

李荟,王梅.用于大规模图像识别的特深卷积网络.计算机系统应用,2021,30(9):330-335

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 06,2020
  • Revised:October 30,2020
  • Adopted:
  • Online: September 04,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063