Visual Question Answering with Symmetrical Attention Mechanism
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In recent years, Visual Question Answering (VQA) based on the fusion of image visual features and question text features has attracted wide attention from researchers. Most of the existing models enable fine-grained interaction and matching by the attention mechanism and intensive iterative operations according to the similarity of image regions and question word pairs, thereby ignoring the autocorrelation information of image regions and question words. This paper introduces a model based on a symmetrical attention mechanism. It can effectively reduce the overall semantic deviation by analyzing the semantic association between images and questions, improving the accuracy of answer prediction. Experiments are conducted on the VQA2.0 data set, and results prove that the proposed model based on the symmetric attention mechanism has evident advantages over the baseline model.

    Reference
    Related
    Cited by
Get Citation

路静,吴春雷,王雷全.基于对称注意力机制的视觉问答系统.计算机系统应用,2021,30(5):114-119

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 15,2020
  • Revised:October 13,2020
  • Adopted:
  • Online: May 06,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063