Natural Speech Emotion Recognition by Integrating Data Balance and Attention Mechanism Based on CNN+LSTM
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to solve the problem of unbalanced sample distribution in a dataset in Speech Emotion Recognition (SER), this study proposes a SER method combining a Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) units with data balance and an attention mechanism. This method first extracts the log-Mel spectrogram from the samples in a speech emotion dataset and devides the sample distribution into segments according to sample distribution for balance. Then, this method fine-tunes the pre-trained CNN model in the segmented Mel-spectrum dataset to learn high-level speech segments. Next, given the differences in the emotion recognition of different segments in speech, the learned segmented CNN features are input into the LSTM with an attention mechanism for learning discriminative features, and speech emotions are classified with LSTM and Softmax layers. The experimental results in the BAUM-1s and CHEAVD2.0 datasets show that the method proposed in this study has much better performance than conventional methods.

    Reference
    Related
    Cited by
Get Citation

陈港,张石清,赵小明.结合数据平衡和注意力机制的CNN+LSTM的自然语音情感识别.计算机系统应用,2021,30(5):269-275

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 23,2020
  • Revised:October 21,2020
  • Adopted:
  • Online: May 06,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063