Overview on Optimization Methods and Control Strategies for Batch Production Process
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [74]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The batch production process is an important part of process industry. Due to unique flexibility and high efficiency, it has been widely applied to food, chemical, pharmaceutical, plastic processing and other industries. The optimization and control of batch processes are extensively studied regarding their nonlinearity and repeatability. In this paper, the optimization and control strategies applied to batch processes in recent 30 years are summarized. Moreover, the difficulties in optimization and control are analyzed, considering nature of batch processes, and further possible development is estimated.

    Reference
    [1] 丁进良, 杨翠娥, 陈远东, 等. 复杂工业过程智能优化决策系统的现状与展望. 自动化学报, 2018, 44(11): 1931-1943
    [2] Hawkins WM, Fisher T. Batch control systems: Design, application, and implementation. Research Triangle Park, NC, USA: ISA, 2006.
    [3] 卢静宜, 曹志兴, 高福荣. 批次过程控制—回顾与展望. 自动化学报, 2017, 43(6): 933-943
    [4] Nagy ZK, Braatz RD. Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis. Journal of Process Control, 2004, 14(4): 411-422. [doi: 10.1016/j.jprocont.2003.07.004
    [5] Lee J, Ramirez WF. Optimal fed-batch control of induced foreign protein production by recombinant bacteria. AIChE Journal, 1994, 40(5): 899-907. [doi: 10.1002/aic.690400516
    [6] Srinivasan B, Bonvin D, Visser E, et al. Dynamic optimization of batch processes: II. Role of measurements in handling uncertainty. Computers & Chemical Engineering, 2003, 27(1): 27-44
    [7] 陆鹏程. 间歇生产过程经济模型预测控制理论与应用[博士学位论文]. 杭州: 浙江大学, 2019.
    [8] 许向阳, 于玲, 祝和云, 等. 间歇蒸煮过程计算机优化控制系统. 中国造纸学报, 2000, 15(1): 98-102. [doi: 10.3321/j.issn:1000-6842.2000.01.020
    [9] 竺建敏, 邵惠鹤, 蒋慰孙. 甲醛生产过程的数学模型与优化. 华东化工学院报, 1986, 12(S1): 1-11
    [10] Tian Y, Zhang J, Morris J. Optimal control of a batch emulsion copolymerisation reactor based on recurrent neural network models. Chemical Engineering and Processing: Process Intensification, 2002, 41(6): 531-538. [doi: 10.1016/S0255-2701(01)00173-8
    [11] 李春富, 叶昊, 王桂增. 基于多向PLS方法的间歇过程质量预测. 系统仿真学报, 2004, 16(6): 1168-1170, 1174. [doi: 10.3969/j.issn.1004-731X.2004.06.016
    [12] 李春富. 基于数据的软测量建模方法及其应用的研究[博士学位论文]. 北京: 清华大学, 2005.
    [13] 陈治纲, 许超, 邵惠鹤. 间歇过程优化与先进控制综述. 化工自动化及仪表, 2003, 30(3): 1-6. [doi: 10.3969/j.issn.1000-3932.2003.03.001
    [14] 张亚如, 陈志凤, 蔡秀峰. 基于自适应律的RBF磨矿分级优化控制过程. 数字技术与应用, 2019, 37(8): 1-2
    [15] Rahman AKMS, Palanki S. On-line optimization of batch processes with nonlinear manipulated input. Chemical Engineering Science, 1996, 51(3): 449-459. [doi: 10.1016/0009-2509(95)00268-5
    [16] Gattu G, Zafiriou E. A methodology for on-line setpoint modification for batch reactor control in the presence of modeling error. Chemical Engineering Journal, 1999, 75(1): 21-29. [doi: 10.1016/S1385-8947(99)00074-1
    [17] 史洪岩, 苑明哲, 王天然, 等. 间歇过程动态优化方法综述. 信息与控制, 2012, 41(1): 75-82
    [18] Skogestad S. Plantwide control: The search for the self-optimizing control structure. Journal of Process Control, 2000, 10(5): 487-507
    [19] Welz C, Srinivasan B, Bonvin D. Measurement-based optimization of batch processes: Meeting terminal constraints on-line via trajectory following. Journal of Process Control, 2008, 18(3-4): 375-382
    [20] Srinivasan B, Primus CJ, Bonvin D, et al. Run-to-run optimization via control of generalized constraints. Control Engineering Practice, 2001, 9(8): 911-919. [doi: 10.1016/S0967-0661(01)00051-X
    [21] Fotopoulos J, Georgakis C, Stenger Jr HG. Use of tendency models and their uncertainty in the design of state estimators for batch reactors. Chemical Engineering and Processing: Process Intensification, 1998, 37(6): 545-558. [doi: 10.1016/S0255-2701(98)00061-0
    [22] 耿佳灿, 顾幸生. 不确定条件下中间存储时间有限多产品间歇生产过程调度. 化工学报, 2015, 66(1): 357-365
    [23] 石博文, 尹燕燕, 刘飞. 基于PSO-控制变量参数化混合策略的间歇化工过程优化控制. 化工学报, 2019, 70(3): 979-986
    [24] 冯健. 清漆生产集散控制系统的设计与仿真[硕士学位论文]. 沈阳: 东北大学, 2012
    [25] 邹志云, 桂新军. 间歇化工过程先进控制技术的应用与发展评述. 石油化工自动化, 2009, 45(1): 1-6. [doi: 10.3969/j.issn.1007-7324.2009.01.001
    [26] 向阳. 基于CAN总线的一体化测控单元的研究[硕士学位论文]. 广州: 广东工业大学, 2005.
    [27] 邵惠鹤. 比例、积分、微分和前馈调节规律的最优性. 化工自动化及仪表, 1983, (2): 16-21
    [28] 李力争. 凿岩机器人双三角钻臂自适应控制策略研究[博士学位论文]. 长沙: 中南大学, 2003.
    [29] 李文, 欧青立, 沈洪远, 等. 智能控制及其应用综述. 重庆邮电学院学报(自然科学版), 2006, 18(3): 376-381
    [30] 李永彪, 孙正贵, 赵清杰. 间歇聚丙烯生产的智能控制方案. 工业仪表与自动化装置, 2002, (5): 15-17, 25. [doi: 10.3969/j.issn.1000-0682.2002.05.004
    [31] 邸书玉. 间歇液相本体法聚丙烯全过程控制系统研究与应用[硕士学位论文]. 长春: 长春理工大学, 2006.
    [32] 张祖鹰. 间歇生产过程的复合模糊PID控制. 制造业自动化, 2010, 32(15): 39-41, 47
    [33] Bhat N, McAvoy TJ. Use of neural nets for dynamic modeling and control of chemical process systems. Computers & Chemical Engineering, 1990, 14(4-5): 573-582
    [34] Zhang J. Developing robust neural network models by using both dynamic and static process operating data. Industrial & Engineering Chemistry Research, 2001, 40(1): 234-241
    [35] Hunt KJ, Sbarbaro D, Żbikowski R, et al. Neural networks for control systems-A survey. Automatica, 1992, 28(6): 1083-1112
    [36] Zhang J, Morris AJ. Nonlinear process modelling using dynamic neuro-fuzzy networks. IFAC Proceedings Volumes, 1997, 30(9): 353-358. [doi: 10.1016/S1474-6670(17)43181-8
    [37] 周长, 张杰, 吕文祥, 等. 基于Bootstrap多神经网络的软测量方法. 控制工程, 2009, 16(4): 475-477, 506. [doi: 10.3969/j.issn.1671-7848.2009.04.027
    [38] 陈雷. 基于软测量技术的C5石油树脂粘度的在线检测研究[硕士学位论文]. 上海: 上海交通大学, 2009.
    [39] Yang Y, Gao FR. Injection velocity control using a self-tuning adaptive controller. International Polymer Processing, 1999, 14(2): 196-204. [doi: 10.3139/217.1537
    [40] Yang Y, Gao FR. Adaptive control of the filling velocity of thermoplastics injection molding. Control Engineering Practice, 2000, 8(11): 1285-1296. [doi: 10.1016/S0967-0661(00)00060-5
    [41] 慕春棣, 梅生伟, 申铁龙. 非线性系统鲁棒控制理论的一些新进展. 控制理论与应用, 2001, 18(1): 1-6. [doi: 10.3969/j.issn.1000-8152.2001.01.001
    [42] Haddad WM, Hayakawa T, Chellaboina VS. Robust adaptive control for nonlinear uncertain systems. Automatica, 2003, 39(3): 551-556. [doi: 10.1016/S0005-1098(02)00244-3
    [43] Xu HJ, Ioannou PA. Robust adaptive control of linearizable nonlinear single input systems with guaranteed error bounds. Automatica, 2004, 40(11): 1905-1911. [doi: 10.1016/j.automatica.2004.04.019
    [44] Qu ZH. Adaptive and robust controls of uncertain systems with nonlinear parameterization. IEEE Transactions on Automatic Control, 2003, 48(10): 1817-1824. [doi: 10.1109/TAC.2003.817931
    [45] 叶宝玉, 王钦若, 熊建斌, 等. 船舶航向非线性backstepping自适应鲁棒控制. 控制工程, 2013, 20(4): 607-610. [doi: 10.3969/j.issn.1671-7848.2013.04.005
    [46] 段洪君, 梁家琦, 孙佳亨, 等. 中药糖析出自适应鲁棒控制. 控制工程, 2019, 26(12): 2176-2180
    [47] 席裕庚, 耿晓军, 陈虹. 预测控制性能研究的新进展. 控制理论与应用, 2000, 17(4): 469-475. [doi: 10.3969/j.issn.1000-8152.2000.04.001
    [48] Camacho EF, Bordons C. Model predictive control. London: Springer-Verlag, 1999.
    [49] Park MJ, Rhee HK. LMI-based robust model predictive control for a continuous MMA polymerization reactor. Computers & Chemical Engineering, 2001, 25(11-12): 1513-1520
    [50] 曾静, 薛定宇, 袁德成. 非线性系统的多模型预测控制方法. 东北大学学报(自然科学版), 2009, 30(1): 26-29. [doi: 10.3321/j.issn:1005-3026.2009.01.007
    [51] Prasad V, Schley M, Russo LP, et al. Product property and production rate control of styrene polymerization. Journal of Process Control, 2002, 12(3): 353-372. [doi: 10.1016/S0959-1524(01)00044-0
    [52] 白璐. 湿法冶金浸出过程非线性预测控制方法的研究[硕士学位论文]. 沈阳: 东北大学, 2017.
    [53] 邹志云, 刘燕军, 刘兴红, 等. 精细化工过程控制技术的重要发展趋势. 冶金自动化, 2011, 35(5): 11-16
    [54] Lee JH, Lee KS. Iterative learning control applied to batch processes: An overview. Control Engineering Practice, 2007, 15(10): 1306-1318
    [55] Wang DW. On D-type and P-type ILC designs and anticipatory approach. International Journal of Control, 2000, 73(10): 890-901. [doi: 10.1080/002071700405879
    [56] Park KH. A study on the robustness of a PID-type iterative learning controller against initial state error. International Journal of Systems Science, 1999, 30(1): 49-59. [doi: 10.1080/002077299292669
    [57] 池荣虎, 韩吉志, 刘宇. 间歇过程温度反应器的PD型迭代学习控制方法. 第三十四届中国控制会议论文集(B卷). 杭州, 中国. 2015.5.
    [58] Chen YQ, Gong ZM, Wen CY. Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays. Automatica, 1998, 34(3): 345-353. [doi: 10.1016/S0005-1098(97)00196-9
    [59] Xiong ZH, Zhang J. Product quality trajectory tracking in batch processes using iterative learning control based on time-varying perturbation models. Industrial & Engineering Chemistry Research, 2003, 42(26): 6802-6814
    [60] Xiong ZH, Zhang J, Dong J. Optimal iterative learning control for batch processes based on linear time-varying perturbation model. Chinese Journal of Chemical Engineering, 2008, 16(2): 235-240
    [61] 叶凌箭, 马修水, 宋执环. 基于输入轨迹参数化的间歇过程迭代学习控制. 化工学报, 2016, 67(3): 743-750
    [62] 周勇. 柔性迭代学习控制的高精度空调智能控制策略. 信息技术, 2020, 44(2): 83-88
    [63] 马乐乐, 刘向杰. 变参考轨迹下的鲁棒迭代学习模型预测控制. 自动化学报, 2019, 45(10): 1933-1945
    [64] Wang LP, Freeman CT, Chai S, et al. Predictive-repetitive control with constraints: From design to implementation. Journal of Process Control, 2013, 23(7): 956-967. [doi: 10.1016/j.jprocont.2013.03.012
    [65] Chen C, Xiong ZH, Zhong YS. Design and analysis of integrated predictive iterative learning control for batch process based on two-dimensional system theory. Chinese Journal of Chemical Engineering, 2014, 22(7): 762-768. [doi: 10.1016/j.cjche.2014.05.008
    [66] Jin ST, Hou ZS, Chi RH. A novel data-driven terminal iterative learning control with iteration prediction algorithm for a class of discrete-time nonlinear systems. Journal of Applied Mathematics, 2014, 2014: 307809. [doi: 10.1155/2014/307809
    [67] 王志文. 间歇过程2D-PID自适应迭代学习控制研究[硕士学位论文]. 杭州: 浙江工业大学, 2016.
    [68] 崔彩莲. 迭代学习控制的频域设计及在注塑机上的应用[硕士学位论文]. 浙江: 浙江工业大学, 2006.
    [69] 孙海乔, 陈珺, 刘飞. 二次型鲁棒迭代学习控制在间歇过程中的应用. 计算机与应用化学, 2013, 30(10): 1148-1152. [doi: 10.3969/j.issn.1001-4160.2013.10.014
    [70] Lee KS, Bang SH, Chang KS. Feedback-assisted iterative learning control based on an inverse process model. Journal of Process Control, 1994, 4(2): 77-89
    [71] Jang JSR, Sun CT. Neuro-fuzzy modeling and control. Proceedings of the IEEE, 1995, 83(3): 378-406
    [72] Chin I, Qin SJ, Lee KS, et al. A two-stage iterative learning control technique combined with real-time feedback for independent disturbance rejection. Automatica, 2004, 40(11): 1913-1922. [doi: 10.1016/j.automatica.2004.05.011
    [73] 张刘军, 索寒生, 彭秀莹. 带批变故障的间歇过程高阶学习容错控制. 控制工程, 2020, 27(6): 1055-1061
    [74] Liu T, Wang YQ. A synthetic approach for robust constrained iterative learning control of piecewise affine batch processes. Automatica, 2012, 48(11): 2762-2775. [doi: 10.1016/j.automatica.2012.08.026
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

汪会,潘海鹏,张益波.间歇生产过程的优化方法和控制策略综述.计算机系统应用,2021,30(5):21-30

Copy
Share
Article Metrics
  • Abstract:1256
  • PDF: 7393
  • HTML: 5868
  • Cited by: 0
History
  • Received:September 12,2020
  • Revised:October 09,2020
  • Online: May 06,2021
Article QR Code
You are the first990573Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063