Two-Stream Inflated 3D CNN for Abnormal Behavior Detection
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Amid the continuous progress in technology, artificial intelligence technologies have been widely applied to the social life. This study develops a system that can identify abnormal behaviors in videos with predictive values. Firstly, we employ a Two-Stream Inflated3D (Two-Stream-I3D) convolutional neural network to extract features from the video. Secondly, we rely on Python to transform the features into those that can be recognized by a deep learning network. Finally, we perform GRNN training for abnormal probability regression. Experimental results show that the system can achieve the average accuracy of nearly 74% for abnormal behavior recognition during the detection of nearly 50 cases.

    Reference
    Related
    Cited by
Get Citation

刘良鑫,林勉芬,钟良泉,彭雯雯,曲超,潘家辉.基于3D双流卷积神经网络的异常行为检测.计算机系统应用,2021,30(5):120-127

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 21,2020
  • Revised:October 13,2020
  • Adopted:
  • Online: May 06,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063