Atrial Fibrillation Detection Using Multi-Head Attention Mechanism
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In recent years, driven by the progress in artificial intelligence, deep learning models have been widely applied to ECG data analysis (especially the detection of atrial fibrillation). This study proposes an algorithm based on the multi-head attention mechanism to classify atrial fibrillation, which is trained and validated through the public data set of the PhysioNet 2017 Challenge. Firstly, the local features of the ECG signal are extracted through the deep residual network. Then, the bidirectional long short-term memory network is built to extract the global features on this basis. Finally, the multi-head attention mechanism layer is used to extract the key features, and cascade modules greatly improve the performance of the overall model. The experimental results show that the proposed heads-8 model can achieve precision of 0.861, recall of 0.862, F1 score of 0.861, and accuracy of 0.860, which is better than the latest methods based on ECG signals for classifying atrial fibrillation.

    Reference
    Related
    Cited by
Get Citation

顾佳艳,蒋明峰,李杨,张鞠成,王志康.基于多头注意力机制的房颤检测方法.计算机系统应用,2021,30(4):17-24

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 13,2020
  • Revised:September 03,2020
  • Adopted:
  • Online: March 31,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063