Efficient Association Rules Extraction by Considering Misleading Suppression in Course Evaluation
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    For the curriculum evaluation in colleges and universities, data-driven teaching management and decision-making issues are investigated in this study. First, the index system of curriculum evaluation from a school determines the data structure of multi-dimensional evaluation data covering students, teachers, peer experts, and teaching supervisors. After clean and conversion of the collected questionnaire data, a data set for data mining is constructed. Then, considering misleading suppression, we apply the improved Apriori association rule mining algorithm based on varying interest degrees to extracting the association rules between the evaluation indices. Finally, a comparison of the discovered relational patterns with the results using the traditional Apriori algorithm shows that the improved Apriori method used in this study can increase the efficiency and accuracy of knowledge discovery and has a prominent guiding role in curriculum construction.

    Reference
    Related
    Cited by
Get Citation

张利生,薛颂东,杨晓梅.课程评价中考虑误导抑制的关联规则高效提取.计算机系统应用,2021,30(5):164-169

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 02,2020
  • Revised:September 25,2020
  • Adopted:
  • Online: May 06,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063