Short-Term Price Trend Forecast Based on LSTM Neural Network
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [11]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    This study mainly optimizes the structure and parameters of the LSTM model, so that the accuracy of predicting the trend in stock prices is significantly improved. Besides, we investigate the weekly and daily data on US stock in terms of predicting the LSTM neural network. On one hand, we compare the difference to verify the impact of different data sets on the forecast. On the other hand, we provide selection suggestions for data sets so as to increase the accuracy of stock forecast. This study uses the multi-time-series stock forecast in the improved LSTM model to predict the trend in stock prices. The results demonstrate that the weekly data perform better in forecast than daily data. To be specific, the average accuracy of daily data and weekly data is 52.8% and 58%, respectively. In summary, the application of weekly data to training the LSTM model yields higher accuracy in stock forecast.

    Reference
    [1] 李春伟. 基于神经网络与遗传算法的股票智能预测[硕士学位论文]. 西安: 西北工业大学, 2005.
    [2] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780. [doi: 10.1162/neco.1997.9.8.1735
    [3] Chen K, Zhou Y, Dai FY. A LSTM-based method for stock returns prediction: A case study of China stock market. Proceedings of 2015 IEEE International Conference on Big Data. Santa Clara, CA, USA. 2015. 2823–2824.
    [4] Jia H J. Investigation into the effectiveness of long short term memory networks for stock price prediction. arXiv: 1603.07893, 2016.
    [5] 孙瑞奇. 基于LSTM神经网络的美股股指价格趋势预测模型的研究[硕士学位论文]. 北京: 首都经济贸易大学, 2016.
    [6] 邓凤欣, 王洪良. LSTM神经网络在股票价格趋势预测中的应用——基于美港股票市场个股数据的研究. 金融经济, 2018, (14): 96–98
    [7] 方红, 韩星煜, 徐涛. 改进型基于LSTM的股票预测方法. 安徽大学学报(自然科学版), 2019, 43(6): 36–42
    [8] 彭燕, 刘宇红, 张荣芬. 基于LSTM的股票价格预测建模与分析. 计算机工程与应用, 2019, 55(11): 209–212. [doi: 10.3778/j.issn.1002-8331.1811-0239
    [9] 陈卫华. 基于深度学习的上证综指波动率预测效果比较研究. 统计与信息论坛, 2018, 33(5): 99–106. [doi: 10.3969/j.issn.1007-3116.2018.05.015
    [10] 肖琪. 人工神经网络在股票预测中的应用研究[硕士学位论文]. 广州: 华南理工大学, 2017.
    [11] 谢琪, 程耕国, 徐旭. 基于神经网络集成学习股票预测模型的研究. 计算机工程与应用, 2019, 55(8): 238–243. [doi: 10.3778/j.issn.1002-8331.1807-0294
    Cited by
Get Citation

邓飞燕,岑少琪,钟凤琪,潘家辉.基于LSTM神经网络的短期价格趋势预测.计算机系统应用,2021,30(4):187-192

Copy
Share
Article Metrics
  • Abstract:1108
  • PDF: 2905
  • HTML: 4229
  • Cited by: 0
History
  • Received:August 02,2020
  • Revised:August 28,2020
  • Online: March 31,2021
Article QR Code
You are the first990420Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063