Application of Auto-Encoder in Optimization of Water Quality Monitoring Points
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Water is one of the necessary elements for our human survival, and the results of water quality monitoring are the basis for water quality control. In a region or watershed, many water quality monitoring points can be found in a region or watershed. With population growth, industrial development, and soil variety, water environment has undergone drastic changes, and some points may be wrongly, overly, or repetitively selected. As for this, resource-saving measures need to be taken to comprehensively show the distribution of water quality with as few points as possible. In this study, a method that combines auto-encoder neural network with hierarchical clustering is proposed. This method uses auto-encoder for feature selection of input samples and analyzes the samples after feature dimensionality reduction through hierarchical clustering, optimizing water quality monitoring points. The experiment results show that the method is more effective as opposed to the method of fuzzy clustering without feature dimensionality reduction.

    Reference
    Related
    Cited by
Get Citation

张镝,吕言成,张楠,魏景锋.自编码器在水质监测点位优化中的应用.计算机系统应用,2021,30(3):262-266

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 25,2020
  • Revised:August 19,2020
  • Adopted:
  • Online: March 06,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063