Application of Improved CNN-LSTM Model in Fault Diagnosis of Rolling Bearings
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The state of rolling bearings has a great influence on the working state of the whole machine, but the fault diagnosis method of the rolling bearings at present has some problems, such as dependency on manual feature extraction and low robustness. Therefore, we propose a fault diagnosis method of rolling bearings (1D-CNN-LSTM) based on the improved integration of 1D Convolutional Neural Network (1D-CNN) and Long Short-Term Memory (LSTM) network. Firstly, the 1D-CNN-LSTM model is used to classify and identify six different working states of rolling bearings. The experimental results indicate that the proposed classification model can identify different states of rolling bearings at a high speed, with an average identification accuracy of 99.83%. Secondly, the proposed model is compared with some traditional algorithm models and shows great advantages in measuring accuracy. Finally, transfer learning is introduced to test the robustness and generalization ability of the proposed model. The experimental results demonstrate that the model proposed in this study has good adaptability and high efficiency under different working conditions, featuring strong generalization ability and engineering application feasibility.

    Reference
    Related
    Cited by
Get Citation

曹正志,叶春明.改进CNN-LSTM模型在滚动轴承故障诊断中的应用.计算机系统应用,2021,30(3):126-133

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 16,2020
  • Revised:August 13,2020
  • Adopted:
  • Online: March 06,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063