Fabric Defect Recognition System Based on Faster RCNN
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The textile industry is a pillar of China’s economy. In the supply chain of fabrics, fabric defects largely affect their quality. At present, textile production enterprises mainly rely on people’s eyes to check the quality of fabrics. This method has high cost of employment, low efficiency, and a high rate of missed and false detections, failing to meet the requirement for high-speed industrial development. This study enhances the data to address the uneven number of categories in the data set. Categories of fabric defects are identified by the Faster RCNN model, and the RPN network in the Faster RCNN model is improved regarding the small concentrated defect targets in the dataset. In addition, this study develops a fabric defect recognition system to display categories of fabric defects and precisely locate the defects. Through the comparison of experimental results, the average detection rate of this method is 79.3%, which is 5.75% higher than that of Fast RCNN.

    Reference
    Related
    Cited by
Get Citation

蔡兆信,李瑞新,戴逸丹,潘家辉.基于Faster RCNN的布匹瑕疵识别系统.计算机系统应用,2021,30(2):83-88

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 18,2020
  • Revised:July 14,2020
  • Adopted:
  • Online: January 29,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063