Chinese Relation Extraction Based on Multi-Granularity and Semantic Information
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Chinese relation extraction adopts character-based or word-based neural networks. Most of the existing methods have word segmentation errors and ambiguity, which will inevitably introduce a lot of redundancy and noise and thus affect the results of relation extraction. In order to solve this problem, this study proposes a Chinese relationship extraction model based on multi-granularity combined with semantic information. In this model, we merge word-level information into character-level information, so as to avoid errors in sentence segmentation; use external semantic information to model polysemous words to reduce the ambiguity caused by semantic words; and adopt Dual attention mechanism at character level and sentence level. The experimental results show that the model proposed in this study can effectively increase the accuracy and recall rate of Chinese relation extraction and has better superiority and interpretability than other baseline models.

    Reference
    Related
    Cited by
Get Citation

陈钰,张安勤,许春辉.基于多粒度和语义信息的中文关系抽取.计算机系统应用,2021,30(3):190-195

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 09,2020
  • Revised:August 11,2020
  • Adopted:
  • Online: March 06,2021
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063